
VSI TCP/IP Services for OpenVMS
Sockets API and System Services
Programming

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: VSI TCP/IP Services Version 5.7

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI TCP/IP Services for OpenVMS Sockets API and System Services
Programming

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

All other trademarks and registered trademarks mentioned in this document are the property of their respective holders.

ii

VSI TCP/IP Services for OpenVMS Sockets API and System Services Programming

Table of Contents
Preface ... vii

1. About VSI .. vii
2. Intended Audience ... vii
3. Document Structure ... vii
4. Related Documentation ... viii
5. OpenVMS Documentation .. ix
6. VSI Encourages Your Comments ... ix
7. Typographical Conventions .. ix

Chapter 1. Application Programming Interfaces .. 1
1.1. BSD Sockets .. 1
1.2. OpenVMS System Services ... 1
1.3. Application Development Files ... 2

1.3.1. Definition Files .. 2
1.3.2. Libraries .. 4
1.3.3. Programming Examples .. 4

1.4. Compiling and Linking C Language Programs .. 5
1.4.1. Compiling and Linking Programs Using BSD Version 4.4 5
1.4.2. VSI C Compilation Warnings .. 5

1.5. Using 64-Bit Addresses (Alpha and I64 Only) .. 5
Chapter 2. Writing Network Applications ... 7

2.1. The Client/Server Communication Process .. 7
2.1.1. Using the TCP Protocol .. 7
2.1.2. Using the UDP Protocol ... 10

2.2. Creating a Socket .. 12
2.2.1. Creating Sockets (Sockets API) ... 13
2.2.2. Creating Sockets (System Services) .. 13

2.3. Binding a Socket (Optional for Clients) .. 16
2.3.1. Binding a Socket (Sockets API) .. 16
2.3.2. Binding a Socket (System Services) ... 17

2.4. Making a Socket a Listener (TCP Protocol) ... 20
2.4.1. Setting a Socket to Listen (Sockets API) .. 20
2.4.2. Setting a Socket to Listen (System Services) ... 21

2.5. Initiating a Connection (TCP Protocol) ... 25
2.5.1. Initiating a Connection (Sockets API) .. 25
2.5.2. Initiating a Connection (System Services) ... 27

2.6. Accepting a Connection (TCP Protocol) .. 30
2.6.1. Accepting a Connection (Sockets API) ... 30
2.6.2. Accepting a Connection (System Services) ... 32

2.7. Getting Socket Options .. 37
2.7.1. Getting Socket Information (Sockets API) .. 38
2.7.2. Getting Socket Information (System Services) ... 40

2.8. Setting Socket Options .. 45
2.8.1. Setting Socket Options (Sockets API) .. 45
2.8.2. Setting Socket Options (System Services) ... 47

2.9. Reading Data .. 53
2.9.1. Reading Data (Sockets API) .. 53
2.9.2. Reading Data (System Services) .. 55

2.10. Receiving IP Multicast Datagrams .. 60
2.11. Reading Out-of-Band Data (TCP Protocol) .. 61

iii

VSI TCP/IP Services for OpenVMS Sockets API and System Services Programming

2.11.1. Reading OOB Data (Sockets API) ... 61
2.11.2. Reading OOB Data (System Services) .. 62

2.12. Peeking at Queued Messages .. 63
2.12.1. Peeking at Data (Sockets API) .. 63
2.12.2. Peeking at Data (System Services) ... 66

2.13. Writing Data ... 66
2.13.1. Writing Data (Sockets API) ... 66
2.13.2. Writing Data (System Services) ... 69

2.14. Writing OOB Data (TCP Protocol) ... 75
2.14.1. Writing OOB Data (Sockets API) .. 76
2.14.2. Writing OOB Data (System Services) .. 77

2.15. Sending Datagrams (UDP Protocol) .. 78
2.15.1. Sending Datagrams (System Services) .. 78
2.15.2. Sending Broadcast Datagrams (Sockets API) .. 78
2.15.3. Sending Broadcast Datagrams (System Services) ... 78
2.15.4. Sending Multicast Datagrams ... 78

2.16. Using the Berkeley Internet Name Domain Service .. 80
2.16.1. BIND Lookups (Sockets API) ... 80
2.16.2. BIND Lookups (System Services) .. 82

2.17. Closing and Deleting a Socket .. 86
2.17.1. Closing and Deleting (Sockets API) ... 86
2.17.2. Closing and Deleting (System Services) .. 87

2.18. Shutting Down Sockets .. 89
2.18.1. Shutting Down a Socket (Sockets API) .. 89
2.18.2. Shutting Down a Socket (System Services) ... 90

2.19. Canceling I/O Operations ... 93
Chapter 3. Using the Sockets API ... 95

3.1. Internet Protocols .. 95
3.1.1. TCP Sockets .. 95

3.1.1.1. Wildcard Addressing .. 95
3.1.2. UDP Sockets ... 96

3.2. Structures ... 96
3.2.1. addrinfo Structure .. 97
3.2.2. cmsghdr Structure .. 98
3.2.3. hostent Structure .. 98
3.2.4. in_addr Structure ... 99
3.2.5. in6_addr Structure (IPv6) ... 99
3.2.6. iovec Structure ... 100
3.2.7. linger Structure ... 100
3.2.8. msghdr Structure .. 100

3.2.8.1. BSD Version 4.3 ... 100
3.2.8.2. BSD Version 4.4 ... 101

3.2.9. netent Structure .. 102
3.2.10. protoent Structure ... 102
3.2.11. servent Structure ... 102
3.2.12. sockaddr Structure .. 103

3.2.12.1. BSD Version 4.3 .. 103
3.2.12.2. BSD Version 4.4 .. 103

3.2.13. sockaddr_in Structure ... 104
3.2.14. sockaddr_in6 Structure (IPv6) ... 104

3.2.14.1. BSD Version 4.3 .. 104
3.2.14.2. BSD Version 4.4 .. 105

iv

VSI TCP/IP Services for OpenVMS Sockets API and System Services Programming

3.2.15. timeval Structure .. 105
3.3. Header Files ... 106
3.4. Constants and Address Variables (IPv6) .. 106
3.5. Interface Identification (IPv6) .. 106

3.5.1. Sending IPv6 Multicast Datagrams ... 107
3.5.2. Receiving IPv6 Multicast Datagrams .. 108
3.5.3. Address Translation and Conversion Functions .. 109
3.5.4. Address-Testing Macros .. 110

3.6. Advanced API (IPv6) .. 110
3.6.1. Using IPv6 Raw Sockets ... 111

3.6.1.1. Accessing ICMPv6 Messages .. 111
3.6.1.2. Accessing the IPv6 Header ... 112
3.6.1.3. Accessing the IPv6 Routing Header ... 113
3.6.1.4. Accessing the IPv6 Options Headers ... 114

3.7. Calling a Socket Function from an AST State .. 116
3.8. Using 64-Bit Buffer Addresses (Alpha and I64 Only) ... 117
3.9. Standard I/O Functions .. 117
3.10. Guidelines for Compiling and Linking IPv6 Applications .. 118
3.11. Compatibility with the OpenVMS VSI C Run-Time Library .. 118
3.12. Error Checking: errno Values ... 118

3.12.1. errno values ... 119
3.12.2. Relationship Between errno and h_errno ... 121

Chapter 4. Sockets API Reference .. 123
4.1. Summary of Socket Functions .. 123
4.2. Socket API Functions .. 126

Chapter 5. Using the $QIO System Service ... 221
5.1. $QIO System Service Variations ... 221
5.2. $QIO Format .. 221

5.2.1. Symbol Definition Files .. 221
5.3. $QIO Functions .. 222
5.4. $QIO Arguments ... 223

5.4.1. $QIO Function-Independent Arguments ... 223
5.4.2. I/O Status Block ... 224
5.4.3. $QIO Function-Dependent Arguments .. 224

5.5. Passing Arguments by Descriptor ... 225
5.5.1. Specifying an Input Parameter List .. 226
5.5.2. Specifying an Output Parameter List .. 228
5.5.3. Specifying a Socket Name ... 230
5.5.4. Specifying a Buffer List .. 232

Chapter 6. OpenVMS System Services Reference ... 235
6.1. System Service Descriptions .. 236
6.2. Network Pseudodevice Driver I/O Functions ... 246
6.3. Network Pseudodevice Driver I/O Function Codes ... 247
6.4. TELNET Port Driver I/O Function Codes ... 281

6.4.1. Interface Definition ... 281
6.4.1.1. Item List Codes ... 282
6.4.1.2. Characteristic Mask Bits ... 283
6.4.1.3. Protocol Types .. 284
6.4.1.4. Service Types .. 284

6.4.2. Passing Parameters to the TELNET Port Driver .. 285
6.5. TELNET Port Driver I/O Function Codes ... 285

v

VSI TCP/IP Services for OpenVMS Sockets API and System Services Programming

6.6. Buffered Reading and Writing of Item Lists .. 287
6.7. TELNET Port Driver I/O Function Codes ... 288

Appendix A. Socket Options ... 291
Appendix B. IOCTL Requests ... 301
Appendix C. Data Types .. 305

C.1. OpenVMS Data Types .. 305
C.2. C and C++ Implementations .. 309

Appendix D. Error Codes .. 313
Appendix E. Porting Applications to IPv6 ... 317

E.1. Using AF_INET6 Sockets ... 317
E.2. Name Changes ... 320
E.3. Structure Changes ... 321

E.3.1. in_addr Structure ... 321
E.3.2. sockaddr Structure ... 321
E.3.3. sockaddr_in Structure ... 322
E.3.4. hostent Structure .. 322

E.4. Function Changes ... 323
E.4.1. gethostbyaddr() Function ... 323
E.4.2. gethostbyname() Function ... 323
E.4.3. inet_aton() Function ... 324
E.4.4. inet_ntoa() Function ... 324
E.4.5. inet_addr() Function ... 324

E.5. Other Application Changes .. 324
E.5.1. Comparing IP Addresses ... 324
E.5.2. Comparing an IP Address to the Wildcard Address ... 325
E.5.3. Using int Data Types to Hold IP Addresses .. 325
E.5.4. Using Functions that Return IP Addresses .. 326
E.5.5. Changing Socket Options .. 326

E.6. Sample Client/Server Programs .. 326
E.6.1. Programs Using AF_INET Sockets .. 326

E.6.1.1. Client Program .. 326
E.6.1.2. Server Program ... 329

E.6.2. Programs Using AF_INET6 Sockets .. 332
E.6.2.1. Client Program .. 332
E.6.2.2. Server Program ... 335

E.6.3. Sample Program Output ... 338

vi

Preface
The TCP/IP Services product is the VSI implementation of the TCP/IP networking protocol suite and
internet services for OpenVMS Alpha, OpenVMS I64, and OpenVMS VAX systems.

A layered software product, TCP/IP Services provides a comprehensive suite of functions and
applications that support industry-standard protocols for heterogeneous network communications and
resource sharing.

This manual describes how to use TCP/IP Services to develop network applications using Berkeley
Sockets or OpenVMS system services.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is intended for experienced programmers who want to write network application programs
that run in the TCP/IP Services environment. Readers should be familiar with the C programming
language, TCP/IP protocols, and networking concepts.

3. Document Structure
This manual contains the following chapters and appendixes:

● Chapter 1, "Application Programming Interfaces" describes the application programming interfaces
that TCP/IP Services supports.

● Chapter 2, "Writing Network Applications" describes the typical function calls for developing network
applications using the TCP and UDP protocols.

● Chapter 3, "Using the Sockets API" discusses information to consider when writing portable network
applications using the Sockets API for IPv4 and IPv6.

● Chapter 4, "Sockets API Reference" contains Sockets API reference information.

● Chapter 5, "Using the $QIO System Service" describes how to use $QIO system services and data
structures to write network applications using OpenVMS system services.

● Chapter 6, "OpenVMS System Services Reference" contains OpenVMS system services and I/O
function reference information pertinent to TCP/IP Services. This information supplements the
OpenVMS system services programming information contained in the VSI OpenVMS System Services
Reference Manual manual.

● Appendix A, "Socket Options" lists socket options supported by both programming interfaces.

● Appendix B, "IOCTL Requests" lists IOCTL requests.

vii

Preface

● Appendix C, "Data Types" describes TCP/IP Services data types.

● Appendix D, "Error Codes" lists Sockets API error codes and equivalent OpenVMS system services
status codes.

● Appendix E, "Porting Applications to IPv6" describes how to modify a network application so that it
can operate in an IPv6 networking environment.

4. Related Documentation
Table 1, "TCP/IP Services Documentation" lists the documents available with this version of TCP/IP
Services.

Table 1. TCP/IP Services Documentation

Manual Contents

VSI TCP/IP Services for OpenVMS Concepts and
Planning

This manual provides conceptual information
about TCP/IP networking on OpenVMS systems,
including general planning issues to consider
before configuring your system to use the TCP/IP
Services software.

This manual also describes the manuals in the
TCP/IP Services documentation set and provides
a glossary of terms and acronyms for the TCP/IP
Services software product.

VSI TCP/IP Services for OpenVMS Installation and
Configuration

This manual explains how to install and configure
the TCP/IP Services product.

VSI TCP/IP Services for OpenVMS User's Guide This manual describes how to use the applications
available with TCP/IP Services such as remote file
operations, email, TELNET, TN3270, and network
printing. This manual explains how to use these
services to communicate with systems on private
internets or on the worldwide Internet.

VSI TCP/IP Services for OpenVMS Management This manual describes how to configure and
manage the TCP/IP Services product.

Use this manual with the VSI TCP/IP Services
for OpenVMS Management Command Reference
manual.

VSI TCP/IP Services for OpenVMS Management
Command Reference

This manual describes the TCP/IP Services
management commands.

Use this manual with the VSI TCP/IP Services for
OpenVMS Management manual.

VSI TCP/IP Services for OpenVMS ONC RPC
Programming

This manual presents an overview of high-level
programming using open network computing
remote procedure calls (ONC RPC). This manual
also describes the RPC programming interface
and how to use the RPCGEN protocol compiler to
create applications.

viii

Preface

Manual Contents

VSI TCP/IP Services for OpenVMS Sockets API and
System Services Programming

This manual describes how to use the Berkeley
Sockets API and OpenVMS system services to
develop network applications.

VSI TCP/IP Services for OpenVMS SNMP
Programming and Reference

This manual describes the Simple Network
Management Protocol (SNMP) and the SNMP
application programming interface (eSNMP). It
describes the subagents provided with TCP/IP
Services, utilities provided for managing subagents,
and how to build your own subagents.

VSI TCP/IP Services for OpenVMS Guide to IPv6 This manual describes the IPv6 environment, the
roles of systems in this environment, the types and
function of the different IPv6 addresses, and how
to configure TCP/IP Services to access the IPv6
network.

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. Typographical Conventions
The following conventions may be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1, then press and release another key or a pointing device
button.

... In examples, a horizontal ellipsis indicates one of the following possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In format descriptions, parentheses indicate that, if you choose more than one
option, you must enclose the choices in parentheses.

ix

https://docs.vmssoftware.com

Preface

[] In format descriptions, brackets indicate that whatever is enclosed within
the brackets is optional; you can select none, one, or all of the choices.
(Brackets are not, however, optional in the syntax of a directory name in a
file specification or in the syntax of a substring specification in an assignment
statement.)

{} In format descriptions, braces surround a required choice of options; you
must choose one of the options listed.

red ink Red ink indicates information that you must enter from the keyboard or a
screen object that you must choose or click on.

For online versions of the book, user input is shown in bold.
boldface text Boldface text represents the introduction of a new term or the name of an

argument, an attribute, or a reason.

Boldface text is also used to show user input in online versions of the book.
italic text Italic text represents information that can vary in system messages (for

example, Internal error number).
UPPERCASE TEXT Uppercase letters indicate that you must enter a command (for example, enter

OPEN/READ), or they indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for a system privilege.

- Hyphens in coding examples indicate that additional arguments to the request
are provided on the line that follows.

numbers Unless otherwise noted, all numbers in the text are assumed to be decimal.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

x

Chapter 1. Application
Programming Interfaces
The application programming interfaces available with TCP/IP Services allow programmers to write
network applications that are independent of the underlying communication facilities. This means
that the system can support communications networks that use different sets of protocols, naming
conventions, and hardware platforms.

The TCP/IP Services product supports two network communication application programming interfaces
(APIs):

● Berkeley Software Distribution (BSD) Sockets

● OpenVMS system services

1.1. BSD Sockets
The Sockets application programming interface (API) supports only the C programming language. The
benefits of using this API include:

● Ease of use.

● Portability — you can create common code for use on UNIX, OpenVMS, and many other platforms.

● 64-bit addressing capability on OpenVMS Alpha and OpenVMS I64 systems.

See Chapter 4, "Sockets API Reference" for a detailed description of Sockets API functions.

1.2. OpenVMS System Services
Each step in the Sockets communications process has a corresponding OpenVMS system service routine.
The benefits of using OpenVMS system services include:

● Improved application performance

● 64-bit addressing capability on OpenVMS Alpha and OpenVMS I64 systems

● Finer granularity of control

● Easier asynchronous programming

● Support for the following programming languages:

• MACRO-32

• BLISS-32

• Ada

• BASIC

1

Chapter 1. Application Programming Interfaces

• C

• C++

• COBOL

• Fortran

• Pascal

See Chapter 6, "OpenVMS System Services Reference" for a detailed description of OpenVMS system
service calls.

1.3. Application Development Files
TCP/IP Services provides definition files and function libraries for use in developing network
applications, and programming example files to assist in learning how to develop network applications.

1.3.1. Definition Files
Table 1.1, "Network Definition Files" lists the definition files that are included with TCP/IP Services in
the SYS$LIBRARY directory. Specific languages may also supply additional files that define structures
related to network programming. Check the documentation for the language you are using.

Table 1.1. Network Definition Files

File Description

TCPIP$INETDEF.ADA Ada definition file
TCPIP$INETDEF.BAS BASIC definition file
TCPIP$INETDEF.FOR Fortran definition file
TCPIP$INETDEF.H C and C++ definition file
TCPIP$INETDEF.MAR MACRO-32 definition file
TCPIP$INETDEF.PAS Pascal definition file
TCPIP$INETDEF.PLI PL/I definition file
TCPIP$INETDEF.R32 BLISS-32 definition file

TCP/IP Services provides header files, data types, and support functions to facilitate OpenVMS system
services programming. The header files provide definitions for constants. Table 1.2, "C Language
Definition Files" lists the header files.

Table 1.2. C Language Definition Files

Header File Description

Common Industry Standard
IN.H Internet system. Constants, functions, and

structures
INET.H Network address information

2

Chapter 1. Application Programming Interfaces

Header File Description

NETDB.H Network database library information
SIGNAL.H UNIX style signal value definitions
SOCKET.H BSD Sockets API
TCP/IP Services Related
BITYPES.H Basic integral types
IF.H Structures providing a basic transport mechanism
IF_ARP.H Structures for the Address Resolution Protocol
IF_TYPES.H IANA types
IN.H Internet protocol family
IN6.H Internet V6 protocol family
IN6_MACHTYPES.H Machine-specific internet V6 protocol family
INET.H Internet access
IOCTL.H I/O controls for special files
IP.H Definitions for IPv4
IP6.H Definitions for IPv6
NAMESER.H Definition for maximum domain name size
NETDB.H Network database library information
RESOLV.H Resolver configuration file
SOCKET.H TCP/IP socket definitions
STROPTS.H Streams interface definitions
TCP.H TCP descriptions
__DECC_INCLUDE_PROLOGUE.H TCP/IP Services internal transliterations for IPv6

functions (directed to TCPIP$LIB.OLB)
OpenVMS Related
DESCRIP.H OpenVMS descriptor
IOCTL.H I/O control
IODEF.H I/O function codes
LIB$FUNCTIONS.H Run-time library function signatures
SSDEF.H System service status codes
STARLET.H System service calls
TCPIP$INETDEF.H TCP/IP network constants, functions, and

structures
Standard UNIX
STDIO.H Standard UNIX I/O functions
STDLIB.H Standard UNIX library functions
STRING.H String-handling functions

The header files NAMESER.H and RESOLV.H contain transliterations that intercept calls made to name
server and resolver API functions and redirect them to TCPIP$LIB.OLB. To use an implementation of
these functions other than the one provided by TCP/IP Services, define the following symbols:

3

Chapter 1. Application Programming Interfaces

● For the name server API routines, use _TCPIP_NO_NS_TRANSLITERATIONS.

● For the resolver API routines, use _TCPIP_NO_RES_TRANSLITERATIONS.

1.3.2. Libraries
Table 1.3, "Sockets API Libraries" lists the function libraries included with TCP/IP Services.

Table 1.3. Sockets API Libraries

File Location Description

TCPIP$IPC_SHR.EXE SYS$LIBRARY Sockets API Run-Time Library
TCPIP$LIB.OLB TCPIP$LIBRARY BSD Version 4.4 Sockets object

library

1.3.3. Programming Examples
Table 1.4, "TCP Programming Examples" and Table 1.5, "UDP Programming Examples" summarize the
programming examples included with TCP/IP Services in the TCPIP$EXAMPLES directory. Most of
these examples consist of a client and a corresponding server.

Table 1.4. TCP Programming Examples

File Description

TCPIP$TCP_SERVER_SOCK.C

TCPIP$TCP_CLIENT_SOCK.C

Example TCP client and server using the Sockets
API.

TCPIP$TCP_SERVER_SOCK_AUXS.C Example TCP server using the Sockets API that
accepts connections from the auxiliary server.

TCPIP$TCP_SERVER_QIO.C

TCPIP$TCP_CLIENT_QIO.C

Example TCP client and server using QIO system
services.

TCPIP$TCP_SERVER_QIO_AUXS.C Example TCP server using QIO system services
that accepts connections from the auxiliary server.

TCPIP$TCP_CLIENT_QIO.MAR

TCPIP$TCP_SERVER_QIO.MAR

Example TCP client and server using QIO system
services and the MACRO-32 programming
language.

Table 1.5. UDP Programming Examples

File Description

TCPIP$UDP_SERVER_SOCK.C

TCPIP$UDP_CLIENT_SOCK.C

Example UDP client and server using the Sockets
API.

TCPIP$UDP_SERVER_QIO.C

TCPIP$UDP_CLIENT_QIO.C

Example UDP client and server using QIO system
services.

TCPIP$UDP_CLIENT_QIO.MAR

TCPIP$UDP_SERVER_QIO.MAR

Example UDP client and server using QIO system
services and the MACRO-32 programming
language.

4

Chapter 1. Application Programming Interfaces

1.4. Compiling and Linking C Language
Programs
To compile and link a C program called MAIN.C, enter the following commands:

$ CC MAIN.C
$ LINK MAIN.OBJ

1.4.1. Compiling and Linking Programs Using BSD
Version 4.4
To compile and link MAIN.C using BSD Version 4.4, enter the following commands:

$ CC/DEFINE=(_SOCKADDR_LEN) MAIN.C
$ LINK MAIN.OBJ

Instead of using the /DEFINE=(_SOCKADDR_LEN) option to the compile command, you can change
your code to include the following #DEFINE preprocessor directive:

#define _SOCKADDR_LEN 1

This statement must appear before you include any of the following header files:

#include <in.h>
#include <netdb.h>
#include <inet.h>

1.4.2. VSI C Compilation Warnings
Certain parameters to the TCP/IP Services Sockets API functions require typecasting to avoid VSI C
compilation warnings. Typecasting is required because of parameter prototyping, which the VSI C header
(filename.H) files have in order to comply with ANSI standards.

1.5. Using 64-Bit Addresses (Alpha and I64
Only)
For applications that run on OpenVMS Alpha and I64 systems, input and output (I/O) operations can be
performed directly to and from the P2 or S2 addressable space by means of the 64-bit friendly $QIO and
$QIOW system services.

To write data to a remote host, use the $QIO(IO$_WRITEVBLK) function with either the p1 (input
buffer) or p5 (input buffer list) parameter. The address you specify for the parameter can be a 64-bit
value.

To read data from a remote host, use the $QIO(IO$_READVBLK) function with either the p1 (output
buffer) or p6 (output buffer list) parameter. The address you specify for the parameter can be a 64-bit
value.

MACRO-32 does not provide 64-bit macros for system services. For more information about
MACRO-32 programming support and for 64-bit addressing in general, see the OpenVMS Alpha Guide
to 64-Bit Addressing and VLM Features.

5

Chapter 1. Application Programming Interfaces

For more information about using the $QIO and $QIOW system services for 64-bit addressing, see
Chapter 5, "Using the $QIO System Service" and Chapter 6, "OpenVMS System Services Reference".

6

Chapter 2. Writing Network
Applications
You can use either the Sockets API or OpenVMS system services to write TCP/IP applications that run
on your corporate network. These applications consist of a series of system calls that perform tasks,
such as creating a socket, performing host and IP address lookups, accepting and closing connections,
and setting socket options. These system calls are direct entry points that client and server processes
use to obtain services from the TCP/IP kernel software. System calls look and behave exactly like other
procedural calls in that they take arguments and return one or more results, including a status value.
These arguments can contain values or pointers to objects in the application program.

This chapter describes the communication process followed by client and server applications. This
process reflects the sequence of system calls within the client and server programs (see Tables Table
2.1, "TCP Server Tasks and Related Functions" through Table 2.4, "UDP Client Tasks and Related
Functions"). The chapter also includes Sockets API and OpenVMS system services examples for each
step in the communication process.

2.1. The Client/Server Communication
Process
The most commonly used paradigm in constructing distributed applications is the client/server model.
The requester, known as the client, sends a request to a server and waits for a response. The server is
an application-level program that offers a service that can be reached over the network. Servers accept
requests that arrive over the network, perform their service, and return the result to the client.

A network connection also has a mode of communication: either connection-oriented or connectionless.
When writing network applications, the developer uses the mode of communication required by
the application-level service. If the application-level service uses the connection-oriented mode of
communication, the developer uses the Transmission Control Protocol (TCP). If the application-level
service uses the connectionless mode of communication, then the developer uses the the User Datagram
Protocol (UDP). The following sections describe how to use TCP and UDP.

2.1.1. Using the TCP Protocol
Figure 2.1, "Client/Server Communication Process Using TCP" shows the communication process for a
TCP client/server application.

7

Chapter 2. Writing Network Applications

Figure 2.1. Client/Server Communication Process Using TCP

In this figure:

1. Server issues a call to create a listening socket.

2. Server and client create a socket.

3. Server and client bind socket. (This step is optional for a client.)

4. Server converts an unconnected socket into a passive socket (LISTEN state).

5. Server issues an accept() and process blocks waiting for a connection request.

6. Client sends a connection request.

7. Server accepts the connection; a new socket is created for communication with this client.

8

Chapter 2. Writing Network Applications

8. Server receives device information from the local host.

9. Data exchange takes place.

10. Client and server delete the socket.

11. Server deletes the listener socket when the service to the client is terminated.

For server applications that use the TCP protocol, Table 2.1, "TCP Server Tasks and Related Functions"
identifies the typical communication tasks, the applicable Sockets API function, and the equivalent
OpenVMS system service.

Table 2.1. TCP Server Tasks and Related Functions

Task Sockets API Function OpenVMS System Services

Create a socket socket() $ASSIGN

$QIO(IO$_SETMODE)1

Bind socket name bind() $QIO(IO$_SETMODE)1

Define listener socket listen() $QIO(IO$_SETMODE)1

Accept connection request accept() $QIO(IO$_ACCESS|IO
$M_ACCEPT)

Exchange data read()

recv()

recvmsg()

$QIO(IO$_READVBLK)

 write()

send()

sendmsg()

$QIO(IO$_WRITEVBLK)

Shut down the socket (optional) shutdown() $QIO(IO$_DEACCESS|IO
$M_SHUTDOWN)

Close and delete the socket close() $QIO(IO$_DEACCESS)

$DASSGN
1The $QIO system service calls for creating a socket, binding a socket name, and defining a network pseudo device as a listener are listed as
three separate calls in this table. You can perform all three steps with one $QIO(IO$_SETMODE) call.

For a client application using the TCP protocol, Table 2.2, "TCP Client Tasks and Related Functions"
shows the tasks in the communication process, the applicable Sockets API functions, and the equivalent
OpenVMS system services.

Table 2.2. TCP Client Tasks and Related Functions

Task Sockets API Function OpenVMS System Services

Create a socket socket() $ASSIGN

$QIO(IO$_SETMODE)1

Bind socket name bind() $QIO(IO$_SETMODE)1

9

Chapter 2. Writing Network Applications

Task Sockets API Function OpenVMS System Services

Connect to server connect() $QIO(IO$_ACCESS)
Exchange data read()

recv()

recvmsg()

$QIO(IO$_READVBLK)

 write()

send()

sendmsg()

$QIO(IO$_WRITEVBLK)

Shut down the socket (optional) shutdown() $QIO(IO$_DEACCESS|IO
$M_SHUTDOWN)

Close and delete the socket close() $QIO(IO$_DEACCESS)

$DASSGN
1The $QIO system service calls for creating a socket and binding a socket name are listed as two separate calls in this table. You can perform
both steps with one $QIO(IO$_SETMODE) call.

2.1.2. Using the UDP Protocol
Figure 2.2, "UDP Socket Communication Process" shows the steps in the communication process for a
client/server application using the UDP protocol.

Figure 2.2. UDP Socket Communication Process

In this figure:

1. Server and client create a socket.

10

Chapter 2. Writing Network Applications

2. Server and client bind the socket name. (This step is optional for a client.)

3. Data exchange takes place.

4. Server and client delete the socket.

For server applications using the UDP protocol, Table 2.3, "UDP Server Tasks and Related Functions"
identifies the tasks in the communication process, the Sockets API functions, and the equivalent
OpenVMS system services.

Table 2.3. UDP Server Tasks and Related Functions

Task Sockets API Function OpenVMS System Service

Create a socket socket() $ASSIGN

$QIO(IO$_SETMODE)1

Bind socket name bind() $QIO(IO$_SETMODE)1

Exchange data read()

recv()

recvfrom()

recvmsg()

$QIO(IO$_READVBLK)

write()

send()

sendto()

sendmsg()

$QIO(IO$_WRITEVBLK)

Shut down the socket (optional) shutdown() $QIO(IO$_DEACCESS|IO
$M_SHUTDOWN)

Close and delete the socket close() $QIO(IO$_DEACCESS)

$DASSGN
1The $QIO system service calls for creating a socket and binding a socket name are listed as two separate calls in this table. You can perform
both steps with one $QIO(IO$_SETMODE) call.

For client applications using the UDP protocol, Table 2.4, "UDP Client Tasks and Related Functions"
describes the tasks in the communication process, the Sockets API function, and the equivalent
OpenVMS system service.

Table 2.4. UDP Client Tasks and Related Functions

Task Sockets API Function OpenVMS System Service

Create a socket socket() $ASSIGN

$QIO(IO$_SETMODE)1

Bind socket name (optional) bind() $QIO(IO$_SETMODE)1

Specify a destination address for
outgoing datagrams

connect() $QIO(IO$_ACCESS)

11

Chapter 2. Writing Network Applications

Task Sockets API Function OpenVMS System Service

Exchange data read()

recv()

recvfrom()

recvmsg()

$QIO(IO$_READVBLK)

 write()

send()

sendto()

sendmsg()

$QIO(IO$_WRITEVBLK)

Shut down the socket (optional) shutdown() $QIO(IO$_DEACCESS|
keep>(IO$M_SHUTDOWN))

Close and delete the socket close() $QIO(IO$_DEACCESS)

$DASSGN
1The $QIO system service calls for creating a socket and binding a socket name are listed as two separate calls in this table. You can perform
both of these steps with one $QIO(IO$_SETMODE) call.

2.2. Creating a Socket
For network communication to take place between two processes, each process requires an end point
to establish a communication link between the two processes. This end point, called a socket, sends
messages to and receives messages from the socket associated with the process at the other end of the
communication link.

Sockets are created by issuing a call to the socket() Sockets API function or by the $ASSIGN and
$QIO (IO$_SETMODE) system service, specifying an address family, a protocol family, and a socket
type.

If the socket creation is successful, the operation returns a small positive integer value called a socket
descriptor, or sockfd. From this point on, the application program uses the socket descriptor to
reference the newly created socket.

In the TCP/IP Services implementation, this socket is also referred to as a device socket. A device
socket is the pairing of an OpenVMS network device and a BSD-style socket. A device socket is either
implicitly created by the Sockets API, or explicitly created using OpenVMS system services. The
socket() function calls the $QIO system services to create the socket.

For information about creating a socket using the Sockets API, see Section 2.2.1, "Creating Sockets
(Sockets API)". For information about explicitly creating a device socket, see Section 2.2.2, "Creating
Sockets (System Services)".

To display information about a device socket, use the TCP/IP management command SHOW
DEVICE_SOCKET.

TCP/IP operations are performed as I/O functions of the network device. The logical name for the
network device is TCPIP$DEVICE.

12

Chapter 2. Writing Network Applications

2.2.1. Creating Sockets (Sockets API)
When using the Sockets API, create the socket with a call to the socket() function. Example 2.1,
"Creating a Socket (Sockets API)" shows how to create a TCP socket using the Sockets API.

Example 2.1. Creating a Socket (Sockets API)

#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */

int main(void)
{
 int sockfd;

 /*
 * create a socket
 */

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

 exit(EXIT_SUCCESS);
}

This example shows how to use the socket() function to create a socket.

This line creates the socket with the following arguments:

● AF_INET specifies the IPv4 address family.

● SOCK_STREAM specifies that the socket type is stream (TCP).

● 0 specifies that the protocol type is IPPROTO_TCP (default).

2.2.2. Creating Sockets (System Services)
When you use OpenVMS system services, you make two calls to create the socket:

● $ASSIGN to assign a channel to the network device

● $QIO or $QIOW to create the socket

The Queue I/O Request ($QIO) service completes asynchronously. It returns to the caller
immediately after queuing the I/O request, without waiting for the I/O operation to complete.

For synchronous completion, use the Queue I/O Request and Wait ($QIOW) service. The $QIOW
service is identical to the $QIO service, except the $QIOW returns to the caller after the I/O
operation completes.

When you make the $QIO or $QIOW call, use either the IO$_SETMODE or the IO$_SETCHAR I/
O service. You generally create, bind, and set up sockets to listen with one $QIO call. For network
software, the IO$_SETMODE and IO$_SETCHAR services perform in an identical manner. However,
you must have LOG_IO privilege to successfully use the IO$_SETMODE I/O service modifier.

13

Chapter 2. Writing Network Applications

When a channel is assigned to the TCPIP$DEVICE template network device, TCP/IP Services creates
a new pseudodevice with a unique unit number and returns a channel number to use in subsequent
operation requests with that device.

When the auxiliary server creates your application server process in response to incoming network
traffic for a service with the LISTEN flag, it creates a device socket for your application server process.
For your application to receive the device socket, assign a channel to SYS$NET (the logical name of a
network pseudodevice) and perform an appropriate $QIO(IO$_SETMODE) function. For a discussion of
the auxiliary server, see the VSI TCP/IP Services for OpenVMS Management manual.

Example 2.2, "Creating a Socket (System Services)" shows how to create a TCP socket using OpenVMS
system services.

Example 2.2. Creating a Socket (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define 'EFN$C_ENF' event flag */
#include <iodef.h> /* define i/o function codes */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
 /* structures, and functions */

struct iosb
 { /* i/o status block */
 unsigned short status; /* i/o completion status */
 unsigned short bytcnt; /* bytes transferred if read/write */
 void *details; /* address of buffer or parameter */
 };

struct sockchar
 { /* socket characteristics */
 unsigned short prot; /* protocol */
 unsigned char type; /* type */
 unsigned char af; /* address format */
 };

int main(void)
{
 struct iosb iosb; /* i/o status block */
 unsigned int status; /* system service return status */
 unsigned short channel; /* network device i/o channel */
 struct sockchar sockchar; /* socket characteristics buffer */

 $DESCRIPTOR(inet_device, /* string descriptor with logical */
 "TCPIP$DEVICE:"); /* name of network pseudodevice */

 /*
 * initialize socket characteristics
 */

 sockchar.prot = TCPIP$C_TCP;
 sockchar.type = TCPIP$C_STREAM;
 sockchar.af = TCPIP$C_AF_INET;

14

Chapter 2. Writing Network Applications

 /*
 * assign i/o channel to network device
 */

 status = sys$assign(&inet_device, /* device name */
 &channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to assign i/o channel\n");
 exit(status);
 }

 /*
 * create a socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &sockchar, /* p1 - socket characteristics */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to create socket\n");
 exit(status);
 }

 exit(EXIT_SUCCESS);
}

This example shows how to use the $ASSIGN and $QIOW system services to:

Define a sockchar structure to contain the characteristics of the type of socket.

Initialize the sockchar structure with the address family, protocol family and type of socket.

Assign a channel to a network device using a string descriptor with the logical name of the network
pseudodevice and a structure to receive the I/O channel.

Create the socket with a call to SYS$QIOW specifying the IO$_SETMODE modifier to supply the
channel and the socket characteristics.

15

Chapter 2. Writing Network Applications

2.3. Binding a Socket (Optional for Clients)
Binding a socket associates an IP address (that is, a 32-bit IPv4 address and a 16-bit TCP or UDP port
number) with a socket. To bind a socket, specify an IP address and a port number for the socket.

With the TCP protocol, you can specify an IP address, a port number, both an IP address and port
number, or neither.

If the application is using the UDP protocol and needs to receive incoming multicast or broadcast
datagrams destined for a specific UDP port, see Section 2.10, "Receiving IP Multicast Datagrams" for
information about specifying the SO_REUSEPORT option when binding the socket.

For an example of binding a socket using the Sockets API, see Section 2.3.1, "Binding a Socket (Sockets
API)". For an example of binding a socket using the OpenVMS system services, see Section 2.3.2,
"Binding a Socket (System Services)".

2.3.1. Binding a Socket (Sockets API)
Example 2.3, "Binding a Socket (Sockets API)" shows an example of a TCP application using the
bind() function to bind a structure.

Note

The process must have SYSPRV, BYPASS, or OPER privilege to bind port numbers 1 to 1023.

Example 2.3. Binding a Socket (Sockets API)

#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define PORTNUM 12345 /* server port number */

int main(void)
{
 int sockfd;
 struct sockaddr_in addr;

 /*
 * initialize socket address structure
 */

 memset(&addr, 0, sizeof(addr));
 addr.sin_family = AF_INET;
 addr.sin_port = htons(PORTNUM);
 addr.sin_addr.s_addr = INADDR_ANY;

 /*
 * create a socket
 */

16

Chapter 2. Writing Network Applications

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

 /*
 * bind ip address and port number to socket
 */

 if (bind(sockfd, (struct sockaddr *) &addr, sizeof(addr)) < 0)
 {
 perror("Failed to bind socket");
 exit(EXIT_FAILURE);
 }

 exit(EXIT_SUCCESS);
}

In this example, the bind() function includes the following arguments:

sockfd specifies the socket descriptor previously created with a call to the socket() function.

addr specifies the address of the sockaddr_in structure that assigns a name to the socket.

sizeof(addr) specifies the size of the sockaddr_in structure.

2.3.2. Binding a Socket (System Services)
Use the IO$_SETMODE or IO$_SETCHAR service of the $QIO system service to bind a socket.

Note

The process must have SYSPRV, BYPASS, or OPER privileges to bind port numbers 1 to 1023.

Example 2.4, "Binding a Socket (System Services)" shows how to bind a sockets using OpenVMS system
services.

Example 2.4. Binding a Socket (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define 'EFN$C_ENF' event flag */
#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <iodef.h> /* define i/o function codes */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
 /* structures, and functions */

#define PORTNUM 12345 /* server port number */

struct iosb

17

Chapter 2. Writing Network Applications

 { /* i/o status block */
 unsigned short status; /* i/o completion status */
 unsigned short bytcnt; /* bytes transferred if read/write */
 void *details; /* address of buffer or parameter */
 };

struct itemlst_2
 { /* item-list 2 descriptor/element */
 unsigned short length; /* length */
 unsigned short type; /* parameter type */
 void *address; /* address of item list */
 };

struct sockchar
 { /* socket characteristics */
 unsigned short prot; /* protocol */
 unsigned char type; /* type */
 unsigned char af; /* address format */
 };

int main(void)
{
 struct iosb iosb; /* i/o status block */
 unsigned int status; /* system service return status */
 unsigned short channel; /* network device i/o channel */
 struct sockchar sockchar; /* socket characteristics buffer */
 struct sockaddr_in addr; /* socket address structure */
 struct itemlst_2 addr_itemlst; /* socket address item-list */
 $DESCRIPTOR(inet_device, /* string descriptor with logical */
 "TCPIP$DEVICE:"); /* name of network pseudodevice */

 /*
 * initialize socket characteristics
 */

 sockchar.prot = TCPIP$C_TCP;
 sockchar.type = TCPIP$C_STREAM;
 sockchar.af = TCPIP$C_AF_INET;

 /*
 * initialize socket address item-list descriptor
 */

 addr_itemlst.length = sizeof(addr);
 addr_itemlst.type = TCPIP$C_SOCK_NAME;
 addr_itemlst.address = &addr;

 /*
 * initialize socket address structure
 */

 memset(&addr, 0, sizeof(addr));
 addr.sin_family = TCPIP$C_AF_INET;
 addr.sin_port = htons(PORTNUM);
 addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

 /*

18

Chapter 2. Writing Network Applications

 * assign i/o channel to network device
 */

 status = sys$assign(&inet_device, /* device name */
 &channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to assign i/o channel\n");
 exit(status);
 }

 /*
 * create a socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &sockchar, /* p1 - socket characteristics */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to create socket\n");
 exit(status);
 }

 /*
 * bind ip address and port number to socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 &addr_itemlst, /* p3 - local socket name */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */

19

Chapter 2. Writing Network Applications

);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to bind socket\n");
 exit(status);
 }

 exit(EXIT_SUCCESS);
}

This example shows how to use OpenVMS system services to:

Assign a network device.

Bind a socket. The p1 argument specifies the socket characteristics.

Bind the IP address and the port number to the socket. The p3 argument specifies the socket name.

2.4. Making a Socket a Listener (TCP Protocol)
Only server programs that use the TCP protocol need to set a socket to be a listener. This allows the
program to receive incoming connection requests. As a connection-oriented protocol, TCP requires a
connection; UDP, a connectionless protocol, does not.

The listen() function:

● Converts the unconnected socket into a passive socket.

● Changes the state of the socket to LISTEN.

● Remains open for the life of the server.

● Tells the kernel to accept incoming connections directed to this socket.

2.4.1. Setting a Socket to Listen (Sockets API)
Example 2.5, "Setting a Socket to Listen (Sockets API)" shows how a TCP server uses the listen()
function to set a socket to listen for connection requests and to specify the number of incoming requests
that can wait to be queued for processing.

Example 2.5. Setting a Socket to Listen (Sockets API)

#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define BACKLOG 1 /* server backlog */
#define PORTNUM 12345 /* server port number */

20

Chapter 2. Writing Network Applications

int main(void)
{
 int sockfd;
 struct sockaddr_in addr;

 /*
 * initialize socket address structure
 */

 memset(&addr, 0, sizeof(addr));
 addr.sin_family = AF_INET;
 addr.sin_port = htons(PORTNUM);
 addr.sin_addr.s_addr = INADDR_ANY;

 /*
 * create a socket
 */

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

 /*
 * bind ip address and port number to socket
 */

 if (bind(sockfd, (struct sockaddr *) &addr, sizeof(addr)) < 0)
 {
 perror("Failed to bind socket");
 exit(EXIT_FAILURE);
 }

 /*
 * set socket as a listen socket
 */
 if (listen(sockfd, BACKLOG) < 0)
 {
 perror("Failed to set socket passive");
 exit(EXIT_FAILURE);
 }
 exit(EXIT_SUCCESS);
}

In this example of a listen() function:

sockfd is the socket descriptor previously defined by a call to the socket() function.

BACKLOG specifies that only one pending connection can be queued at any given time. The
maximum number of connections is specified by the system configuration variable somaxconn.
The default value for somaxconn is 1024. Refer to the VSI TCP/IP Services for OpenVMS Tuning
and Troubleshooting manual for how to display and change the somaxconn value dynamically.

2.4.2. Setting a Socket to Listen (System Services)

21

Chapter 2. Writing Network Applications

Example 2.6, "Setting a Socket to Listen (System Services)" shows how to use the IO$_SETMODE
service to set the socket to listen for connection requests.

Example 2.6. Setting a Socket to Listen (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define 'EFN$C_ENF' event flag */
#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <iodef.h> /* define i/o function codes */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
 /* structures, and functions */

#define BACKLOG 1 /* server backlog */
#define PORTNUM 12345 /* server port number */

struct iosb
 { /* i/o status block */
 unsigned short status; /* i/o completion status */
 unsigned short bytcnt; /* bytes transferred if read/write */
 void *details; /* address of buffer or parameter */
 };

struct itemlst_2
 { /* item-list 2 descriptor/element */
 unsigned short length; /* length */
 unsigned short type; /* parameter type */
 void *address; /* address of item list */
 };

struct sockchar
 { /* socket characteristics */
 unsigned short prot; /* protocol */
 unsigned char type; /* type */
 unsigned char af; /* address format */
 };

int main(void)
{
 struct iosb iosb; /* i/o status block */
 unsigned int status; /* system service return status */
 unsigned short channel; /* network device i/o channel */
 struct sockchar sockchar; /* socket characteristics buffer */
 struct sockaddr_in addr; /* socket address structure */
 struct itemlst_2 addr_itemlst; /* socket address item-list */
 $DESCRIPTOR(inet_device, /* string descriptor with logical */
 "TCPIP$DEVICE:"); /* name of network pseudodevice */

 /*
 * initialize socket characteristics

22

Chapter 2. Writing Network Applications

 */

 sockchar.prot = TCPIP$C_TCP;
 sockchar.type = TCPIP$C_STREAM;
 sockchar.af = TCPIP$C_AF_INET;

 /*
 * initialize socket address item-list descriptor
 */

 addr_itemlst.length = sizeof(addr);
 addr_itemlst.type = TCPIP$C_SOCK_NAME;
 addr_itemlst.address = &addr;

 /*
 * initialize socket address structure
 */

 memset(&addr, 0, sizeof(addr));
 addr.sin_family = TCPIP$C_AF_INET;
 addr.sin_port = htons(PORTNUM);
 addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

 /*
 * assign i/o channel to network device
 */

 status = sys$assign(&inet_device, /* device name */
 &channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to assign i/o channel\n");
 exit(status);
 }

 /*
 * create a socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &sockchar, /* p1 - socket characteristics */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)

23

Chapter 2. Writing Network Applications

 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to create socket\n");
 exit(status);
 }
 /*
 * bind ip address and port number to socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 &addr_itemlst, /* p3 - local socket name */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to bind socket\n");
 exit(status);
 }

 /*
 * set socket as a listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 BACKLOG, /* p4 - connection backlog */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to set socket passive\n");

24

Chapter 2. Writing Network Applications

 exit(status);
 }

 exit(EXIT_SUCCESS);
}

This example shows how to use three separate $QIO calls with the IO$_SETMODE service to:

Create a socket, by specifying parameter p1.

Bind a socket, by specifying parameter p3.

Set the socket to passive (set listen on the socket) by specifying a value for parameter p4.

Alternatively, you can perform all three operations with one $QIO call.

2.5. Initiating a Connection (TCP Protocol)
A TCP client establishes a connection with a TCP server by issuing the connect() function. The
connect() function initiates a three-way handshake between the client and the server.

2.5.1. Initiating a Connection (Sockets API)
To initiate a connection to a TCP server, use the connect() function. Example 2.7, "Initiating a
Connection (Sockets API)" shows a TCP client the connect() function to initiate a connection to a
TCP server.

Example 2.7. Initiating a Connection (Sockets API)

#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define BUFSZ 1024 /* user input buffer size */
#define PORTNUM 12345 /* server port number */

void get_servaddr(void *addrptr)
{
 char buf[BUFSIZ];
 struct in_addr val;
 struct hostent *host;

 while (TRUE)
 {
 printf("Enter remote host: ");

 if (fgets(buf, sizeof(buf), stdin) == NULL)
 {
 printf("Failed to read user input\n");
 exit(EXIT_FAILURE);
 }

25

Chapter 2. Writing Network Applications

 buf[strlen(buf)-1] = 0;

 val.s_addr = inet_addr(buf);

 if (val.s_addr != INADDR_NONE)
 {
 memcpy(addrptr, &val, sizeof(struct in_addr));
 break;
 }

 if ((host = gethostbyname(buf)))
 {
 memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
 break;
 }
 }
}

int main(void)
{
 int sockfd;
 struct sockaddr_in addr;

 /*
 * initialize socket address structure
 */

 memset(&addr, 0, sizeof(addr));
 addr.sin_family = AF_INET;
 addr.sin_port = htons(PORTNUM);
 get_servaddr(&addr.sin_addr);

 /*
 * create a socket
 */

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

 /*
 * connect to specified host and port number
 */

 printf("Initiated connection to host: %s, port: %d\n",
 inet_ntoa(addr.sin_addr), ntohs(addr.sin_port)
);

 if (connect(sockfd, (struct sockaddr *) &addr, sizeof(addr)) < 0)
 {
 perror("Failed to connect to server");
 exit(EXIT_FAILURE);
 }

26

Chapter 2. Writing Network Applications

 exit(EXIT_SUCCESS);
}

This example shows how to:

Create a socket of type SOCK_STREAM.

Initiate a connection on the socket.

2.5.2. Initiating a Connection (System Services)
To initiate a connection to a TCP server, use the $QIO system service with the IO$_ACCESS
service and the p3 argument. The p3 argument of the IO$_ACCESS service is the address of an
item_list_2 descriptor that points to the remote socket name.

Example 2.8, "Initiating a Connection (System Services)" shows a TCP client using the IO_$ACCESS
service to initiate a connection.

Example 2.8. Initiating a Connection (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define 'EFN$C_ENF' event flag */
#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

 /* structures, and functions */

#define BUFSZ 1024 /* user input buffer size */
#define PORTNUM 12345 /* server port number */

struct iosb
 { /* i/o status block */
 unsigned short status; /* i/o completion status */
 unsigned short bytcnt; /* bytes transferred if read/write */
 void *details; /* address of buffer or parameter */
 };

struct itemlst_2
 { /* item-list 2 descriptor/element */
 unsigned short length; /* length */
 unsigned short type; /* parameter type */
 void *address; /* address of item list */
 };

struct sockchar
 { /* socket characteristics */
 unsigned short prot; /* protocol */

27

Chapter 2. Writing Network Applications

 unsigned char type; /* type */
 unsigned char af; /* address format */
 };

void get_servaddr(void *addrptr)
{
 char buf[BUFSIZ];
 struct in_addr val;
 struct hostent *host;

 while (TRUE)
 {
 printf("Enter remote host: ");

 if (fgets(buf, sizeof(buf), stdin) == NULL)
 {
 printf("Failed to read user input\n");
 exit(EXIT_FAILURE);
 }

 buf[strlen(buf)-1] = 0;

 val.s_addr = inet_addr(buf);

 if (val.s_addr != INADDR_NONE)
 {
 memcpy(addrptr, &val, sizeof(struct in_addr));
 break;
 }

 if ((host = gethostbyname(buf)))
 {
 memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
 break;
 }
 }
}

int main(void)
{
 struct iosb iosb; /* i/o status block */
 unsigned int status; /* system service return status */
 unsigned short channel; /* network device i/o channel */
 struct sockchar sockchar; /* socket characteristics buffer */
 struct sockaddr_in addr; /* socket address structure */
 struct itemlst_2 addr_itemlst; /* socket address item-list */
 $DESCRIPTOR(inet_device, /* string descriptor with logical */
 "TCPIP$DEVICE:"); /* name of network pseudodevice */

 /*
 * initialize socket characteristics
 */

 sockchar.prot = TCPIP$C_TCP;
 sockchar.type = TCPIP$C_STREAM;
 sockchar.af = TCPIP$C_AF_INET;

28

Chapter 2. Writing Network Applications

 /*
 * initialize socket address item-list descriptor
 */

 addr_itemlst.length = sizeof(addr);
 addr_itemlst.type = TCPIP$C_SOCK_NAME;
 addr_itemlst.address = &addr;

 /*
 * initialize socket address structure
 */

 memset(&addr, 0, sizeof(addr));
 addr.sin_family = TCPIP$C_AF_INET;
 addr.sin_port = htons(PORTNUM);
 get_servaddr(&addr.sin_addr);

 /*
 * assign i/o channel to network device
 */

 status = sys$assign(&inet_device, /* device name */
 &channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to assign i/o channel\n");
 exit(status);
 }
 /*
 * create a socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &sockchar, /* p1 - socket characteristics */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to create socket\n");
 exit(status);

29

Chapter 2. Writing Network Applications

 }

 /*
 * connect to specified host and port number
 */

 printf("Initiated connection to host: %s, port: %d\n",
 inet_ntoa(addr.sin_addr), ntohs(addr.sin_port)
);

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_ACCESS, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 &addr_itemlst, /* p3 - remote socket name */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to connect to server\n");
 exit(status);
 }

 exit(EXIT_SUCCESS);
}

This example shows how to:

Create a socket using the IO$_SETMODE service.

Initiate a connection using the IO$_ACCESS service.

2.6. Accepting a Connection (TCP Protocol)
A TCP server program must be able to accept incoming connection requests from client programs. The
accept() function:

● Returns the next completed connection from the completed connection queue.

● Returns a new socket descriptor that is connected with the client, called the connected socket. There
is one connected socket for each client connected to the server. The connected socket remains until
the server is finished serving the client.

2.6.1. Accepting a Connection (Sockets API)
Example 2.9, "Accepting a Connection (Sockets API)" shows how to use the accept() function.

30

Chapter 2. Writing Network Applications

Example 2.9. Accepting a Connection (Sockets API)

#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

int main(void)
{
 int conn_sockfd; /* connection socket descriptor */
 int listen_sockfd; /* listen socket descriptor */

 unsigned int cli_addrlen; /* returned length of client socket */
 /* address structure */
 struct sockaddr_in cli_addr; /* client socket address structure */
 struct sockaddr_in serv_addr; /* server socket address structure */

 /*
 * initialize client's socket address structure
 */

 memset(&cli_addr, 0, sizeof(cli_addr));

 /*
 * initialize server's socket address structure
 */

 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_port = htons(SERV_PORTNUM);
 serv_addr.sin_addr.s_addr = INADDR_ANY;

 /*
 * create a listen socket
 */

 if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

 /*
 * bind server's ip address and port number to listen socket
 */

 if (bind(listen_sockfd,
 (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
 {

31

Chapter 2. Writing Network Applications

 perror("Failed to bind socket");
 exit(EXIT_FAILURE);
 }

 /*
 * set socket as a listen socket
 */

 if (listen(listen_sockfd, SERV_BACKLOG) < 0)
 {
 perror("Failed to set socket passive");
 exit(EXIT_FAILURE);
 }

 /*
 * accept connection from a client
 */

 printf("Waiting for a client connection on port: %d\n",
 ntohs(serv_addr.sin_port)
);

 cli_addrlen = sizeof(cli_addr);

 conn_sockfd = accept(listen_sockfd,
 (struct sockaddr *) &cli_addr,
 &cli_addrlen
);
 if (conn_sockfd < 0)
 {
 perror("Failed to accept client connection");
 exit(EXIT_FAILURE);
 }

 printf("Accepted connection from host: %s, port: %d\n",
 inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)
);

 exit(EXIT_SUCCESS);
}

In this example of an accept() function:

listen_sockfd is the socket descriptor returned by the previous call to the socket()
function. This socket is bound to an address with the bind() function. The listen() function
changes the socket state from CLOSED to LISTEN (converts the unconnected socket to a passive
socket).

cli_addr receives the protocol address of the client.

cli_addrlen is a value/result parameter that initially contains the size of the cli_addr
structure. On return of the accept() function, the cli_addr structure contains the actual
length, in bytes, of the socket address structure returned by the kernel for the connected socket.

2.6.2. Accepting a Connection (System Services)
To accept a connection request:

32

Chapter 2. Writing Network Applications

1. Use the $ASSIGN system service to create a channel for the new connection.

2. Use the $QIO system service using the IO$_ACCESS service with the IO$M_ACCEPT modifier.

The p4 argument specifies the address of a word written with the channel number of the new
connection. If p3 specifies a valid output buffer, the $QIO service returns the remote socket name.

Note

Specifying the IO$_ACCESS service is mandatory for TCP/IP. The IO$_ACCESS service uses the
p4 argument only with the IO$M_ACCEPT modifier.

Example 2.10, "Accepting a Connection (System Services)" shows a TCP server using the IO$_ACCESS
service with the IO$M_ACCEPT modifier to accept incoming connection requests.

Example 2.10. Accepting a Connection (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define 'EFN$C_ENF' event flag */
#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */

 /* structures, and functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

struct iosb
 { /* i/o status block */
 unsigned short status; /* i/o completion status */
 unsigned short bytcnt; /* bytes transferred if read/write */
 void *details; /* address of buffer or parameter */
 };

struct itemlst_2
 { /* item-list 2 descriptor/element */
 unsigned short length; /* length */
 unsigned short type; /* parameter type */
 void *address; /* address of item list */
 };

struct itemlst_3
 { /* item-list 3 descriptor/element */
 unsigned short length; /* length */
 unsigned short type; /* parameter type */
 void *address; /* address of item list */

33

Chapter 2. Writing Network Applications

 unsigned int *retlen; /* address of returned length */
 };

struct sockchar
 { /* socket characteristics */
 unsigned short prot; /* protocol */
 unsigned char type; /* type */
 unsigned char af; /* address format */
 };

int main(void)
{
 struct iosb iosb; /* i/o status block */
 unsigned int status; /* system service return status */

 unsigned short conn_channel; /* connect inet device i/o channel */

 unsigned short listen_channel; /* listen inet device i/o channel */
 struct sockchar listen_sockchar; /* listen socket characteristics */

 unsigned int cli_addrlen; /* returned length of client socket */
 /* address structure */
 struct sockaddr_in cli_addr; /* client socket address structure */
 struct itemlst_3 cli_itemlst; /* client socket address item-list */

 struct sockaddr_in serv_addr; /* server socket address structure */
 struct itemlst_2 serv_itemlst; /* server socket address item-list */

 $DESCRIPTOR(inet_device, /* string descriptor with logical */
 "TCPIP$DEVICE:"); /* name of network pseudodevice */

 /*
 * initialize socket characteristics
 */

 listen_sockchar.prot = TCPIP$C_TCP;
 listen_sockchar.type = TCPIP$C_STREAM;
 listen_sockchar.af = TCPIP$C_AF_INET;

 /*
 * initialize client's item-list descriptor
 */

 memset(&cli_itemlst, 0, sizeof(cli_itemlst));
 cli_itemlst.length = sizeof(cli_addr);
 cli_itemlst.address = &cli_addr;
 cli_itemlst.retlen = &cli_addrlen;

 /*
 * initialize client's socket address structure
 */

 memset(&cli_addr, 0, sizeof(cli_addr));

 /*
 * initialize server's item-list descriptor
 */

34

Chapter 2. Writing Network Applications

 serv_itemlst.length = sizeof(serv_addr);
 serv_itemlst.type = TCPIP$C_SOCK_NAME;
 serv_itemlst.address = &serv_addr;

 /*
 * initialize server's socket address structure
 */

 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = TCPIP$C_AF_INET;
 serv_addr.sin_port = htons(SERV_PORTNUM);
 serv_addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

 /*
 * assign i/o channels to network device
 */

 status = sys$assign(&inet_device, /* device name */
 &listen_channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (status & STS$M_SUCCESS)
 status = sys$assign(&inet_device, /* device name */
 &conn_channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to assign i/o channel(s)\n");
 exit(status);
 }

 /*
 * create a listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &listen_sockchar, /* p1 - socket characteristics */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

35

Chapter 2. Writing Network Applications

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to create socket\n");
 exit(status);
 }

 /*
 * bind server's ip address and port number to listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 &serv_itemlst, /* p3 - local socket name */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to bind socket\n");
 exit(status);
 }

 /*
 * set socket as a listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 SERV_BACKLOG, /* p4 - connection backlog */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to set socket passive\n");
 exit(status);

36

Chapter 2. Writing Network Applications

 }

 /*
 * accept connection from a client
 */

 printf("Waiting for a client connection on port: %d\n",
 ntohs(serv_addr.sin_port)
);

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_ACCESS|IO$M_ACCEPT,
 /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 &cli_itemlst, /* p3 - remote socket name */
 &conn_channel, /* p4 - i/o channel for new */
 /* connection */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to accept client connection\n");
 exit(status);
 }

 printf("Accepted connection from host: %s, port: %d\n",
 inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)
);

 exit(EXIT_SUCCESS);
}

This example show how to:

Create a socket using the IO$M_SETMODE service.

Bind the socket using the IO$M_SETMODE service, specifying parameter p3.

Set the socket to passive mode using the IO$M_SETMODE service, specifying parameter p4.

Accept an incoming connection using the IO$_ACCESS|IO$_ACCEPT service.

2.7. Getting Socket Options
Obtaining socket information is useful if your program has management functions, or if you have a
complex program that uses multiple connections you need to track.

37

Chapter 2. Writing Network Applications

2.7.1. Getting Socket Information (Sockets API)
You can use any of the following Sockets API functions to get socket information:

● getpeername()

● getsockname()

● getsockopt()

Example 2.11, "Getting Socket Information (Sockets API)" shows a TCP server using the
getpeername() function to get the remote IP address and port number associated with a socket.

Example 2.11. Getting Socket Information (Sockets API)

#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

int main(void)
{
 int conn_sockfd; /* connection socket descriptor */
 int listen_sockfd; /* listen socket descriptor */

 unsigned int cli_addrlen; /* returned length of client socket */
 /* address structure */
 struct sockaddr_in cli_addr; /* client socket address structure */
 struct sockaddr_in serv_addr; /* server socket address structure */

 /*
 * initialize server's socket address structure
 */

 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_port = htons(SERV_PORTNUM);
 serv_addr.sin_addr.s_addr = INADDR_ANY;

 /*
 * create a listen socket
 */

 if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }
 /*

38

Chapter 2. Writing Network Applications

 * bind server's ip address and port number to listen socket
 */

 if (bind(listen_sockfd,
 (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
 {
 perror("Failed to bind socket");
 exit(EXIT_FAILURE);
 }

 /*
 * set socket as a listen socket
 */

 if (listen(listen_sockfd, SERV_BACKLOG) < 0)
 {
 perror("Failed to set socket passive");
 exit(EXIT_FAILURE);
 }

 /*
 * accept connection from a client
 */

 printf("Waiting for a client connection on port: %d\n",
 ntohs(serv_addr.sin_port)
);

 conn_sockfd = accept(listen_sockfd, (struct sockaddr *) 0, 0);

 if (conn_sockfd < 0)
 {
 perror("Failed to accept client connection");
 exit(EXIT_FAILURE);
 }

 /*
 * log client connection request
 */

 cli_addrlen = sizeof(cli_addr);
 memset(&cli_addr, 0, sizeof(cli_addr));

 if (getpeername(conn_sockfd ,
 (struct sockaddr *) &cli_addr, &cli_addrlen) <
 0)
 {
 perror("Failed to get client name");
 exit(EXIT_FAILURE);
 }

 printf("Accepted connection from host: %s, port: %d\n",
 inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)
);

 exit(EXIT_SUCCESS);
}

39

Chapter 2. Writing Network Applications

This example obtains the remote IP address and port number using the getpeername() function and
then prints the information.

conn_sockfd is the socket descriptor returned by the previous call to the accept() function.

cli_addr is the address structure for the connected socket.

cli_addrlen is the length of the address structure for the connected socket.

The printf statement accesses the information stored in the address structure for the connected
socket and displays the client's IP address and port number. The inet_ntoa() and the
ntohs() functions are used to convert the IP address and port number from network byte order
to host byte order.

2.7.2. Getting Socket Information (System Services)
To obtain information about the parts of a socket, use the $QIO system service with the IO
$_SENSEMODE function.

Example 2.12, "Getting Socket Information (System Services)" shows a TCP service using the IO
$_SENSEMODE function to get a client's IP address and port number.

Example 2.12. Getting Socket Information (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define 'EFN$C_ENF' event flag */
#include <in.h> /* define internet related constants, */

 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
 /* structures, and functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

struct iosb
 { /* i/o status block */
 unsigned short status; /* i/o completion status */
 unsigned short bytcnt; /* bytes transferred if read/write */
 void *details; /* address of buffer or parameter */
 };

struct itemlst_2
 { /* item-list 2 descriptor/element */
 unsigned short length; /* length */
 unsigned short type; /* parameter type */
 void *address; /* address of item list */
 };

40

Chapter 2. Writing Network Applications

struct itemlst_3
 { /* item-list 3 descriptor/element */
 unsigned short length; /* length */
 unsigned short type; /* parameter type */
 void *address; /* address of item list */
 unsigned int *retlen; /* address of returned length */
 };

struct sockchar
 { /* socket characteristics */
 unsigned short prot; /* protocol */
 unsigned char type; /* type */
 unsigned char af; /* address format */
 };

int main(void)
{
 struct iosb iosb; /* i/o status block */
 unsigned int status; /* system service return status */

 unsigned short conn_channel; /* connect inet device i/o channel */

 unsigned short listen_channel; /* listen inet device i/o channel */
 struct sockchar listen_sockchar; /* listen socket characteristics */

 unsigned int cli_addrlen; /* returned length of client socket */
 /* address structure */
 struct sockaddr_in cli_addr; /* client socket address structure */
 struct itemlst_3 cli_itemlst; /* client socket address item-list */

 struct sockaddr_in serv_addr; /* server socket address structure */
 struct itemlst_2 serv_itemlst; /* server socket address item-list */

 $DESCRIPTOR(inet_device, /* string descriptor with logical */
 "TCPIP$DEVICE:"); /* name of network pseudodevice */

 /*
 * initialize socket characteristics
 */

 listen_sockchar.prot = TCPIP$C_TCP;
 listen_sockchar.type = TCPIP$C_STREAM;
 listen_sockchar.af = TCPIP$C_AF_INET;

 /*
 * initialize client's item-list descriptor
 */

 cli_itemlst.length = sizeof(cli_addr);
 cli_itemlst.type = TCPIP$C_SOCK_NAME;
 cli_itemlst.address = &cli_addr;
 cli_itemlst.retlen = &cli_addrlen;

 /*
 * initialize server's item-list descriptor
 */

41

Chapter 2. Writing Network Applications

 serv_itemlst.length = sizeof(serv_addr);
 serv_itemlst.type = TCPIP$C_SOCK_NAME;
 serv_itemlst.address = &serv_addr;

 /*
 * initialize server's socket address structure
 */

 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = TCPIP$C_AF_INET;
 serv_addr.sin_port = htons(SERV_PORTNUM);
 serv_addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

 /*
 * assign i/o channels to network device
 */

 status = sys$assign(&inet_device, /* device name */
 &listen_channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (status & STS$M_SUCCESS)
 status = sys$assign(&inet_device, /* device name */
 &conn_channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to assign i/o channel(s)\n");
 exit(status);
 }

 /*
 * create a listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &listen_sockchar, /* p1 - socket characteristics */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

42

Chapter 2. Writing Network Applications

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to create socket\n");
 exit(status);
 }

 /*
 * bind server's ip address and port number to listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 &serv_itemlst, /* p3 - local socket name */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to bind socket\n");
 exit(status);
 }

 /*
 * set socket as a listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 SERV_BACKLOG, /* p4 - connection backlog */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to set socket passive\n");
 exit(status);

43

Chapter 2. Writing Network Applications

 }

 /*
 * accept connection from a client
 */

 printf("Waiting for a client connection on port: %d\n",
 ntohs(serv_addr.sin_port)
);

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_ACCESS|IO$M_ACCEPT,
 /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 &conn_channel, /* p4 - i/o channel for new */
 /* connection */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to accept client connection\n");
 exit(status);
 }

 /*
 * log client connection request
 */

 memset(&cli_addr, 0, sizeof(cli_addr));

 status = sys$qiow(EFN$C_ENF, /* event flag */
 conn_channel, /* i/o channel */
 IO$_SENSEMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 &cli_itemlst, /* p4 - peer socket name */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

44

Chapter 2. Writing Network Applications

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to get client name\n");
 exit(status);
 }

 printf("Accepted connection from host: %s, port: %d\n",
 inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)
);

 exit(EXIT_SUCCESS);
}

This example show how to use the $QIOW system service to obtain remote port information.

The IO$_SENSEMODE service returns the port number and IP address in the structure defined by
p4.

2.8. Setting Socket Options
To set binary socket options and socket options that return a value, use the setsockopt() Sockets
API function or the IO$_SETMODE system service.

2.8.1. Setting Socket Options (Sockets API)
Example 2.13, "Setting Socket Options (Sockets API)" shows a TCP server using the setsockopt ()
function to set the SO_REUSEADDR option.

Example 2.13. Setting Socket Options (Sockets API)

#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

int main(void)
{
 int optval = 1; /* SO_REUSEADDR's option value (on) */

 int conn_sockfd; /* connection socket descriptor */
 int listen_sockfd; /* listen socket descriptor */

 unsigned int cli_addrlen; /* returned length of client socket */
 /* address structure */
 struct sockaddr_in cli_addr; /* client socket address structure */
 struct sockaddr_in serv_addr; /* server socket address structure */

 /*

45

Chapter 2. Writing Network Applications

 * initialize server's socket address structure
 */

 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_port = htons(SERV_PORTNUM);
 serv_addr.sin_addr.s_addr = INADDR_ANY;

 /*
 * create a listen socket
 */

 if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

 /*
 * bind server's ip address and port number to listen socket
 */

 if (setsockopt(listen_sockfd,
 SOL_SOCKET , SO_REUSEADDR , &optval , sizeof(optval)) < 0)
 {
 perror("Failed to set socket option");
 exit(EXIT_FAILURE);
 }

 if (bind(listen_sockfd,
 (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
 {
 perror("Failed to bind socket");
 exit(EXIT_FAILURE);
 }

 /*
 * set socket as a listen socket
 */

 if (listen(listen_sockfd, SERV_BACKLOG) < 0)
 {
 perror("Failed to set socket passive");
 exit(EXIT_FAILURE);
 }

 /*
 * accept connection from a client
 */

 printf("Waiting for a client connection on port: %d\n",
 ntohs(serv_addr.sin_port)
);

 conn_sockfd = accept(listen_sockfd, (struct sockaddr *) 0, 0);

 if (conn_sockfd < 0)
 {

46

Chapter 2. Writing Network Applications

 perror("Failed to accept client connection");
 exit(EXIT_FAILURE);
 }

 /*
 * log client connection request
 */

 cli_addrlen = sizeof(cli_addr);
 memset(&cli_addr, 0, sizeof(cli_addr));

 if (getpeername(conn_sockfd,
 (struct sockaddr *) &cli_addr, &cli_addrlen) < 0)
 {
 perror("Failed to get client name");
 exit(EXIT_FAILURE);
 }

 printf("Accepted connection from host: %s, port: %d\n",
 inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)
);

 exit(EXIT_SUCCESS);
}

This example uses the setsockopt() function to allow local addresses to be reused.

listen_sockfd refers to an open socket descriptor returned by the previous call to the
socket () function.

SOL_SOCKET specifies that the options will be modified at socket level.

SO_REUSEADDR is the socket option to be set. In this case, the socket option allows reuse of local
addresses.

optval is the value to set for the option. In this case, the value is 1, which enables the option.

sizeof(optval) is the size of the option value.

Calls to setsockopt() specifying unsupported options return an error code of ENOPROTOOPT.

2.8.2. Setting Socket Options (System Services)
Example 2.14, "Setting Socket Options (System Services)" shows how to set socket options using system
services.

Example 2.14. Setting Socket Options (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define 'EFN$C_ENF' event flag */
#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */

47

Chapter 2. Writing Network Applications

#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
 /* structures, and functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

struct iosb
 { /* i/o status block */
 unsigned short status; /* i/o completion status */
 unsigned short bytcnt; /* bytes transferred if read/write */
 void *details; /* address of buffer or parameter */
 };

struct itemlst_2
 { /* item-list 2 descriptor/element */
 unsigned short length; /* length */
 unsigned short type; /* parameter type */
 void *address; /* address of item list */
 };

struct itemlst_3
 { /* item-list 3 descriptor/element */
 unsigned short length; /* length */
 unsigned short type; /* parameter type */
 void *address; /* address of item list */
 unsigned int *retlen; /* address of returned length */
 };

struct sockchar
 { /* socket characteristics */
 unsigned short prot; /* protocol */
 unsigned char type; /* type */
 unsigned char af; /* address format */
 };

int main(void)
{
 int optval = 1; /* reuseaddr option value (on) */

 struct iosb iosb; /* i/o status block */
 unsigned int status; /* system service return status */

 unsigned short conn_channel; /* connect inet device i/o channel */

 unsigned short listen_channel; /* listen inet device i/o channel */
 struct sockchar listen_sockchar; /* listen socket characteristics */

 unsigned int cli_addrlen; /* returned length of client socket */
 /* address structure */
 struct sockaddr_in cli_addr; /* client socket address structure */
 struct itemlst_3 cli_itemlst; /* client socket address item-list */

 struct sockaddr_in serv_addr; /* server socket address structure */
 struct itemlst_2 serv_itemlst; /* server socket address item-list */

48

Chapter 2. Writing Network Applications

 struct itemlst_2 sockopt_itemlst; /* server socket option item-list
 */
 struct itemlst_2 reuseaddr_itemlst; /* reuseaddr option item-list
 */

 $DESCRIPTOR(inet_device, /* string descriptor with logical */
 "TCPIP$DEVICE:"); /* name of network pseudodevice */

 /*
 * initialize socket characteristics
 */

 listen_sockchar.prot = TCPIP$C_TCP;
 listen_sockchar.type = TCPIP$C_STREAM;
 listen_sockchar.af = TCPIP$C_AF_INET;

 /*
 * initialize reuseaddr's item-list element
 */

 reuseaddr_itemlst.length = sizeof(optval);
 reuseaddr_itemlst.type = TCPIP$C_REUSEADDR;
 reuseaddr_itemlst.address = &optval;

 /*
 * initialize setsockopt's item-list descriptor
 */

 sockopt_itemlst.length = sizeof(reuseaddr_itemlst);
 sockopt_itemlst.type = TCPIP$C_SOCKOPT;
 sockopt_itemlst.address = &reuseaddr_itemlst;

 /*
 * initialize client's item-list descriptor
 */

 cli_itemlst.length = sizeof(cli_addr);
 cli_itemlst.type = TCPIP$C_SOCK_NAME;
 cli_itemlst.address = &cli_addr;
 cli_itemlst.retlen = &cli_addrlen;

 /*
 * initialize server's item-list descriptor
 */

 serv_itemlst.length = sizeof(serv_addr);
 serv_itemlst.type = TCPIP$C_SOCK_NAME;
 serv_itemlst.address = &serv_addr;

 /*
 * initialize server's socket address structure
 */

 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = TCPIP$C_AF_INET;
 serv_addr.sin_port = htons(SERV_PORTNUM);
 serv_addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

49

Chapter 2. Writing Network Applications

 /*
 * assign i/o channels to network device
 */

 status = sys$assign(&inet_device, /* device name */
 &listen_channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (status & STS$M_SUCCESS)
 status = sys$assign(&inet_device, /* device name */
 &conn_channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to assign i/o channel(s)\n");
 exit(status);
 }

 /*
 * create a listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &listen_sockchar, /* p1 - socket characteristics */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to create socket\n");
 exit(status);
 }

 /*
 * bind server's ip address and port number to listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */

50

Chapter 2. Writing Network Applications

 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 &sockopt_itemlst, /* p5 - socket options */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to set socket option\n");
 exit(status);
 }

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 &serv_itemlst, /* p3 - local socket name */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to bind socket\n");
 exit(status);
 }

 /*
 * set socket as a listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 SERV_BACKLOG, /* p4 - connection backlog */
 0, /* p5 */

51

Chapter 2. Writing Network Applications

 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to set socket passive\n");
 exit(status);
 }

 /*
 * accept connection from a client
 */

 printf("Waiting for a client connection on port: %d\n",
 ntohs(serv_addr.sin_port)
);

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_ACCESS|IO$M_ACCEPT,
 /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 &conn_channel, /* p4 - i/o channel for new */
 /* connection */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to accept client connection\n");
 exit(status);
 }

 /*
 * log client connection request
 */

 memset(&cli_addr, 0, sizeof(cli_addr));

 status = sys$qiow(EFN$C_ENF, /* event flag */
 conn_channel, /* i/o channel */
 IO$_SENSEMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */

52

Chapter 2. Writing Network Applications

 0, /* p2 */
 0, /* p3 */
 &cli_itemlst, /* p4 - peer socket name */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to get client name\n");
 exit(status);
 }

 printf("Accepted connection from host: %s, port: %d\n",
 inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)
);

 exit(EXIT_SUCCESS);
}

This example sets socket options using the IO$SETMODE function.

The p5 parameter sets the socket options as specified in sockopt_itemlst.

2.9. Reading Data
TCP/IP Services allows the application to read data after it performs the following operations:

● Create a socket

● Bind a socket name to the socket

● Establish a connection

2.9.1. Reading Data (Sockets API)
Example 2.15, "Reading Data (Sockets API)" shows a TCP client using the recv() function to read
data.

Example 2.15. Reading Data (Sockets API)

#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define BUFSZ 1024 /* user input buffer size */
#define PORTNUM 12345 /* server port number */

53

Chapter 2. Writing Network Applications

void get_servaddr(void *addrptr)
{
 char buf[BUFSIZ];
 struct in_addr val;
 struct hostent *host;

 while (TRUE)
 {
 printf("Enter remote host: ");

 if (fgets(buf, sizeof(buf), stdin) == NULL)
 {
 printf("Failed to read user input\n");
 exit(EXIT_FAILURE);
 }

 buf[strlen(buf)-1] = 0;

 val.s_addr = inet_addr(buf);

 if (val.s_addr != INADDR_NONE)
 {
 memcpy(addrptr, &val, sizeof(struct in_addr));
 break;
 }

 if ((host = gethostbyname(buf)))
 {
 memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
 break;
 }
 }
}

int main(void)
{
 char buf[512];
 int nbytes, sockfd;
 struct sockaddr_in addr;

 /*
 * initialize socket address structure
 */

 memset(&addr, 0, sizeof(addr));
 addr.sin_family = AF_INET;
 addr.sin_port = htons(PORTNUM);
 get_servaddr(&addr.sin_addr);

 /*
 * create a socket
 */

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);

54

Chapter 2. Writing Network Applications

 }

 /*
 * connect to specified host and port number
 */

 printf("Initiated connection to host: %s, port: %d\n",
 inet_ntoa(addr.sin_addr), ntohs(addr.sin_port)
);

 if (connect(sockfd, (struct sockaddr *) &addr, sizeof(addr)) < 0)
 {
 perror("Failed to connect to server");
 exit(EXIT_FAILURE);
 }

 /*
 * read data from connection
 */

 nbytes = recv(sockfd, buf, sizeof(buf), 0);
 if (nbytes < 0)
 {
 perror("Failed to read data from connection");
 exit(EXIT_FAILURE);
 }

 buf[nbytes] = 0;
 printf("Data received: %s\n", buf);

 exit(EXIT_SUCCESS);
}

This example reads data from a connection using the recv() function.

sockfd is the socket descriptor previously defined by a call to the connect() function.

buf points to the receive buffer where the data is placed.

sizeof (buf) is the size of the receive buffer.

0 indicates that out-of-band data is not being received.

2.9.2. Reading Data (System Services)
The $QIO IO$_READVBLK function transfers data received from the internet host (and kept in system
dynamic memory) into the address space of the user's process. After the read operation completes, the
data in system dynamic memory is discarded.

Example 2.16, "Reading Data (System Services)" shows a TCP client using the IO$_READVBLK
function to read data into a single I/O buffer.

Example 2.16. Reading Data (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define 'EFN$C_ENF' event flag */
#include <in.h> /* define internet related constants, */
 /* functions, and structures */

55

Chapter 2. Writing Network Applications

#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
 /* structures, and functions */

#define BUFSZ 1024 /* user input buffer size
 */
#define PORTNUM 12345 /* server port number
 */

struct iosb
 { /* i/o status block */
 unsigned short status; /* i/o completion status */
 unsigned short bytcnt; /* bytes transferred if read/write */
 void *details; /* address of buffer or parameter */
 };

struct itemlst_2
 { /* item-list 2 descriptor/element */
 unsigned short length; /* length */
 unsigned short type; /* parameter type */
 void *address; /* address of item list */
 };

struct sockchar
 { /* socket characteristics */
 unsigned short prot; /* protocol */
 unsigned char type; /* type */
 unsigned char af; /* address format */
 };

void get_servaddr(void *addrptr)
{
 char buf[BUFSIZ];
 struct in_addr val;
 struct hostent *host;

 while (TRUE)
 {
 printf("Enter remote host: ");

 if (fgets(buf, sizeof(buf), stdin) == NULL)
 {
 printf("Failed to read user input\n");
 exit(EXIT_FAILURE);
 }

 buf[strlen(buf)-1] = 0;

56

Chapter 2. Writing Network Applications

 val.s_addr = inet_addr(buf);

 if (val.s_addr != INADDR_NONE)
 {
 memcpy(addrptr, &val, sizeof(struct in_addr));
 break;
 }

 if ((host = gethostbyname(buf)))
 {
 memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
 break;
 }
 }
}

int main(void)
{
 char buf[512]; /* data buffer */
 int buflen = sizeof(buf); /* length of data buffer */

 struct iosb iosb; /* i/o status block */
 unsigned int status; /* system service return status */
 unsigned short channel; /* network device i/o channel */
 struct sockchar sockchar; /* socket characteristics buffer */
 struct sockaddr_in addr; /* socket address structure */
 struct itemlst_2 addr_itemlst; /* socket address item-list */
 $DESCRIPTOR(inet_device, /* string descriptor with logical */
 "TCPIP$DEVICE:"); /* name of network pseudodevice */

 /*
 * initialize socket characteristics
 */

 sockchar.prot = TCPIP$C_TCP;
 sockchar.type = TCPIP$C_STREAM;
 sockchar.af = TCPIP$C_AF_INET;

 /*
 * initialize socket address item-list descriptor
 */

 addr_itemlst.length = sizeof(addr);
 addr_itemlst.type = TCPIP$C_SOCK_NAME;
 addr_itemlst.address = &addr;

 /*
 * initialize socket address structure
 */

 memset(&addr, 0, sizeof(addr));
 addr.sin_family = TCPIP$C_AF_INET;
 addr.sin_port = htons(PORTNUM);
 get_servaddr(&addr.sin_addr);

 /*

57

Chapter 2. Writing Network Applications

 * assign i/o channel to network device
 */

 status = sys$assign(&inet_device, /* device name */
 &channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to assign i/o channel\n");
 exit(status);
 }

 /*
 * create a socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &sockchar, /* p1 - socket characteristics */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to create socket\n");
 exit(status);
 }

 /*
 * connect to specified host and port number
 */

 printf("Initiated connection to host: %s, port: %d\n",
 inet_ntoa(addr.sin_addr), ntohs(addr.sin_port)
);

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_ACCESS, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */

58

Chapter 2. Writing Network Applications

 &addr_itemlst, /* p3 - remote socket name */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to connect to server\n");
 exit(status);
 }

 /*
 * read data from connection
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_READVBLK, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 buf, /* p1 - buffer address */
 buflen, /* p2 - buffer length */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to read data from connection\n");
 exit(status);
 }

 buf[iosb.bytcnt] = 0;
 printf("Data received: %s\n", buf);

 exit(EXIT_SUCCESS);
}

This example reads data from a connection using the IO$_READVLK service. The data can be written
to a single buffer, as shown here, or a list of buffers.

This example specifies the address of the return buffer in p1, and the length of the return buffer in
p2.

To specify a list of read buffers, omit the p1 and p2 arguments, and pass the list of buffers as the
p6 parameter. See Section 5.5.2, "Specifying an Output Parameter List" for more information.

59

Chapter 2. Writing Network Applications

2.10. Receiving IP Multicast Datagrams
Before a host can receive (read) IP multicast datagrams destined for a particular multicast group other
than all hosts group, the application must direct the host it is running on to become a member of
that multicast group.

To join a group or drop membership from a group, specify the following options. Make sure you include
the IN.H header file.

● To join a multicast group, specify the appropriate option:

• IP_ADD_MEMBERSHIP (Sockets API)

• TCPIP$C_IP_ADD_MEMBERSHIP (system services)

For example:

struct ip_mreq mreq;
if (setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, & mreq,
 sizeof(mreq)) == -1)
 perror("setsockopt");

The mreq variable has the following structure:

struct ip_mreq {
 struct in_addr (imr_multiaddr); /* IP multicast address of
 group */
 struct in_addr (imr_interface); /* local IP address of
 interface */
};

In this structure, imr_interface can be specified as INADDR_ANY, which allows an
application to choose the default multicast interface.

Each multicast group membership is associated with a particular interface, and multiple interfaces can
join the same group. Alternatively, specifying one of the host's local addresses allows an application
to select a particular, multicast-capable interface. The maximum number of memberships that can be
added on a single socket is subject to the IP_MAX_MEMBERSHIPS value, which is defined in the
IN.H header file.

If multiple sockets request that a host join a multicast group, the host remains a member of that
multicast group until the last of those sockets is closed.

● To drop membership from a multicast group, specify the appropriate option to the setsockopt()
function:

• IP_DROP_MEMBERSHIP (Sockets API)

• TCPIP$C_IP_DROP_MEMBERSHIP (system services)

For example:

struct ip_mreq mreq;
if (setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq,
 sizeof(mreq))== -1)
perror("setsockopt");

60

Chapter 2. Writing Network Applications

The mreq variable contains the same structure values used for adding membership.

To receive multicast datagrams sent to a specific UDP port, the receiving socket must have been bound
to that port using the $QIO(IO$_SETMODE) system service function or the bind() Sockets API
function. More than one process can receive UDP datagrams destined for the same port if the function
is preceded by a setsockopt() function that specifies the SO_REUSEPORT option. For a complete
list of the socket options, see Appendix A, "Socket Options".

For example:

int setreuse = 1;
if (setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &setreuse,
 sizeof(setreuse)) == -1)
 perror("setsockopt");

When the SO_REUSEPORT option is set, every incoming multicast or broadcast UDP datagram
destined for the shared port is delivered to all sockets bound to that port.

Delivery of IP multicast datagrams to SOCK_RAW sockets is determined by the protocol type of the
destination.

2.11. Reading Out-of-Band Data (TCP
Protocol)
Only stream-type (TCP/IP) sockets can receive out-of-band (OOB) data. Upon receiving a TCP/IP OOB
character, TCP/IP Services stores a pointer in the received stream to the character that precedes the OOB
character.

A read operation with a user buffer size larger than the size of the received stream up to the OOB
character completes by returning to the user the received stream up to, but not including, the OOB
character.

Poll the socket to determine whether additional read operations are needed before getting all the
characters from the stream that precedes the OOB character.

2.11.1. Reading OOB Data (Sockets API)
You can use the recv() socket function with the MSG_OOB flag set to receive out-of-band data
regardless of how many of the preceding characters in the stream you have received.

Example 2.17, "Reading OOB Data (Sockets API)" shows a TCP server using the recv() function to
receive out-of-band data.

Example 2.17. Reading OOB Data (Sockets API)

 retval = recv(sock_3, message, sizeof(message), MSG_OOB);
 if (retval == -1)
 {
 perror ("receive");
 cleanup(2, sock_2, sock_3);
 }
 else
 printf (" %s\n", message);

This example reads data uses the flags argument to the recv() function to specify OOB data.

61

Chapter 2. Writing Network Applications

sock_3 specifies that OOB data is received from socket 2.

message points to the read buffer where the data is placed.

sizeof (message) indicates the size of the read buffer.

flag, when set to MSG_OOB, indicates that OOB data is being received in the specified buffer.

2.11.2. Reading OOB Data (System Services)
To receive OOB data from a remote process, use the IO$_READVBLK function with the IO
$M_INTERRUPT modifier.

To poll the socket, use a $QIO command with the IO$_SENSEMODE function and the TCPIP
$C_IOCTL subfunction that specifies the SIOCATMARK operation.

If the SIOCATMARK returns a value of 0, use additional read QIOs to read more data before reading
the OOB character. If the SIOCATMARK returns a value of 1, the next read QIO returns the OOB
character.

These functions are useful if a socket has the OOBINLINE socket option set. The OOB character is read
with the characters in the stream (IO$_READVBLK) but is not read before the preceding characters.
To determine whether or not the first character in the user buffer on the next read is an OOB, poll the
socket.

To get a received OOB character for a socket with the socket option OOBINLINE clear, use one of the
following functions:

● $QIO with the function IO$_READVBLK|IO$M_INTERRUPT

● IO$_READVBLK with the p4 parameter TCPIP$C_MSG_OOB flag set

Example 2.18, "Reading OOB Data (System Services)" shows how to use the IO$M_INTERRUPT
modifier to read out-of-band data.

Example 2.18. Reading OOB Data (System Services)

/*
** Attempt to receive the OOB data from the client.
** Use the function code of IO$_READVBLK, passing the address of the
** input buffer to P1, and the OOB code, TCPIP$C_MSG_OOB, to P4.
** We support the sending and receiving of a one byte of OOB data.
*/
 sysSrvSts = sys$qiow(0, /* efn.v | 0 */
 IOChanClient, /* chan.v */
 IO$_READVBLK, /* func.v */
 &iosb, /* iosb.r | 0 */
 0, 0, /* astadr, astprm: UNUSED */
 &OOBBuff, /* p1.r IO buffer */

 MaxBuff, /* p2.v IO buffer size */
 0, /* p3 UNUSED */
 TCPIP$C_MSG_OOB, /* p4.v IO options flag */

 0, 0 /* p5, p6 UNUSED */
);

 if(((sysSrvSts & 1) != 1) || /* Validate the system service. */
 ((iosb.cond_value & 1) != 1)) /* Validate the IO status. */
 {

62

Chapter 2. Writing Network Applications

 cleanup(IOChanClient);
 cleanup(IOChannel);
 errorExit(sysSrvSts, iosb.cond_value);
 }
 else
 if(iosb.count == 0)
 printf(" FAILED to receive the message, no connection.
\n");
 else
 printf(" SUCCEEDED in receiving '%d'\n", OOBBuff);

This example reads OOB data using the IO$_READVBLK service to specify:

The read buffer in parameter p1 and the length of the receive buffer in parameter p2.

OOB data, specifying the TCPIP$C_MSG_OOB flag in parameter p4.

2.12. Peeking at Queued Messages
You can use a read operation to look at data in a socket receive queue without removing the data from
the buffer. This is called peeking.

2.12.1. Peeking at Data (Sockets API)
Use the MSG_PEEK flag with the recv() function to peek at data in the socket receive queue.

Example 2.19, "Peeking at Data (Sockets API)" shows a TCP server using the recv() function with the
MSG_PEEK flag to peek at received data.

Example 2.19. Peeking at Data (Sockets API)

#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <unixio.h> /* define unix i/o */

#define BUFSZ 128 /* user input buffer size */
#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 1234 /* server port number */

int main(void)
{
 char buf[BUFSIZ]; /* user input buffer */
 int conn_sockfd; /* connection socket descriptor */
 int listen_sockfd; /* listen socket descriptor */

 int optval = 1; /* SO_REUSEADDR'S option value (on) */

 unsigned int cli_addrlen; /* returned length of client socket */
 /* address structure */
 struct sockaddr_in cli_addr; /* client socket address structure */

63

Chapter 2. Writing Network Applications

 struct sockaddr_in serv_addr; /* server socket address structure */

 /*
 * initialize client's socket address structure
 */

 memset(&cli_addr, 0, sizeof(cli_addr));

 /*
 * initialize server's socket address structure
 */

 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_port = htons(SERV_PORTNUM);
 serv_addr.sin_addr.s_addr = INADDR_ANY;

 /*
 * create a listen socket
 */

 if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

 /*
 * bind server's ip address and port number to listen socket
 */

 if (setsockopt(listen_sockfd,
 SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) <
 0)
 {
 perror("Failed to set socket option");
 exit(EXIT_FAILURE);
 }

 if (bind(listen_sockfd,
 (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
 {
 perror("Failed to bind socket");
 exit(EXIT_FAILURE);
 }

 /*
 * set socket as a listen socket
 */

 if (listen(listen_sockfd, SERV_BACKLOG) < 0)
 {
 perror("Failed to set socket passive");
 exit(EXIT_FAILURE);
 }

 /*
 * accept connection from a client

64

Chapter 2. Writing Network Applications

 */

 printf("Waiting for a client connection on port: %d\n",
 ntohs(serv_addr.sin_port)
);

 cli_addrlen = sizeof(cli_addr);

 conn_sockfd = accept(listen_sockfd,
 (struct sockaddr *) &cli_addr,
 &cli_addrlen
);
 if (conn_sockfd < 0)
 {
 perror("Failed to accept client connection");
 exit(EXIT_FAILURE);
 }

 /*
 * ask client to pick a character
 */

 sprintf(buf, "Please pick a character:\r\n");

 if (send(conn_sockfd, buf, strlen(buf), 0) != strlen(buf))
 {
 perror("Failed to write data to connection");
 exit(EXIT_FAILURE);
 }

 /*
 * peek at client's reply
 */

 if (recv(conn_sockfd , buf , 1 , MSG_PEEK) != 1)
 {
 perror("Failed to read data from connection");
 exit(EXIT_FAILURE);
 }

 sprintf(buf, "Before receiving, I see you picked '%c'.\r\n", buf[0]);

 if (send(conn_sockfd, buf, strlen(buf), 0) != strlen(buf))
 {
 perror("Failed to write data to connection");
 exit(EXIT_FAILURE);
 }

 /*
 * now, read client's reply
 */

 if (recv(conn_sockfd, buf, 1, 0) != 1)
 {
 perror("Failed to read data from connection");
 exit(EXIT_FAILURE);
 }

65

Chapter 2. Writing Network Applications

 sprintf(buf, "Sure enough, I received '%c'.\r\n", buf[0]);

 if (send(conn_sockfd, buf, strlen(buf), 0) != strlen(buf))
 {
 perror("Failed to write data to connection");
 exit(EXIT_FAILURE);
 }

 /*
 * close sockets
 */

 if (close(conn_sockfd) < 0)
 {
 perror("Failed to close socket");
 exit(EXIT_FAILURE);
 }

 if (close(listen_sockfd) < 0)
 {
 perror("Failed to close socket");
 exit(EXIT_FAILURE);
 }

 exit(EXIT_SUCCESS);
}

The recv() function receives data from a connected socket and places it in a buffer, as follows:

conn_sockfd is the socket descriptor created as a result of a call to the accept() function.

buf points to the buffer into which received data is placed.

1 indicates the size of the buffer.

MSG_PEEK is the flag that specifies the character entered is looked at without removing it from
the buffer.

2.12.2. Peeking at Data (System Services)
To peek at data that is next in the socket receive queue, use the IO$_READVBLK function of the $QIO
system service and use the TCPIP$C_MSG_PEEK flag. This allows you to use multiple read operations
on the same data. The code is similar to the example shown in Section 2.11.2, "Reading OOB Data
(System Services)".

2.13. Writing Data
For programs that use TCP, data writing occurs after a client program initiates a connection and after
the server program accepts the connection. When using UDP, you also have the option of establishing a
default peer address with a specific socket, but this is not required for data transfer.

2.13.1. Writing Data (Sockets API)
Example 2.20, "Writing Data (Sockets API)" shows a TCP server using the send() function to transmit
data.

66

Chapter 2. Writing Network Applications

Example 2.20. Writing Data (Sockets API)

#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <netdb.h> /* define network database library info */
#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

int main(void)
{
 int optval = 1; /* SO_REUSEADDR's option value (on) */

 int conn_sockfd; /* connection socket descriptor */
 int listen_sockfd; /* listen socket descriptor */

 unsigned int cli_addrlen; /* returned length of client socket */
 /* address structure */
 struct sockaddr_in cli_addr; /* client socket address structure */
 struct sockaddr_in serv_addr; /* server socket address structure */

 char buf[] = "Hello, world!"; /* data buffer */

 /*
 * initialize server's socket address structure
 */

 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_port = htons(SERV_PORTNUM);
 serv_addr.sin_addr.s_addr = INADDR_ANY;

 /*
 * create a listen socket
 */

 if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }
 /*
 * bind server's ip address and port number to listen socket
 */

 if (setsockopt(listen_sockfd,
 SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) <
 0)
 {
 perror("Failed to set socket option");
 exit(EXIT_FAILURE);

67

Chapter 2. Writing Network Applications

 }

 if (bind(listen_sockfd,
 (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
 {
 perror("Failed to bind socket");
 exit(EXIT_FAILURE);
 }

 /*
 * set socket as a listen socket
 */

 if (listen(listen_sockfd, SERV_BACKLOG) < 0)
 {
 perror("Failed to set socket passive");
 exit(EXIT_FAILURE);
 }

 /*
 * accept connection from a client
 */

 printf("Waiting for a client connection on port: %d\n",
 ntohs(serv_addr.sin_port)
);

 conn_sockfd = accept(listen_sockfd, (struct sockaddr *) 0, 0);

 if (conn_sockfd < 0)
 {
 perror("Failed to accept client connection");
 exit(EXIT_FAILURE);
 }

 /*
 * log client connection request
 */

 cli_addrlen = sizeof(cli_addr);
 memset(&cli_addr, 0, sizeof(cli_addr));

 if (getpeername(conn_sockfd,
 (struct sockaddr *) &cli_addr, &cli_addrlen) < 0)
 {
 perror("Failed to get client name");
 exit(EXIT_FAILURE);
 }

 printf("Accepted connection from host: %s, port: %d\n",
 inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)
);

 /*
 * write data to connection
 */

 if (send(conn_sockfd, buf, sizeof(buf), 0) < 0)

68

Chapter 2. Writing Network Applications

 {
 perror("Failed to write data to connection");
 exit(EXIT_FAILURE);
 }

 printf("Data sent: %s\n", buf);

 exit(EXIT_SUCCESS);
}

In this example, the send() function include the following arguments:

conn_sockfd specifies the connected socket that is to receive the data.

buf is the address of the send buffer where the data to be sent is placed.

sizeof (buf) indicates the size of the send buffer.

flag, when set to 0, indicates that OOB data is not being sent.

2.13.2. Writing Data (System Services)
The IO$_WRITEVBLK function of the $QIO system service copies data from the address space of the
user's process to system dynamic memory and then transfers the data to an internet host or port.

Example 2.21, "Writing Data (System Services)" shows a TCP server using the IO$_WRITEVBLK
function to transmit a single data buffer.

Example 2.21. Writing Data (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define 'EFN$C_ENF' event flag */
#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
 /* structures, and functions */

#define SERV_BACKLOG 1 /* server backlog */
#define SERV_PORTNUM 12345 /* server port number */

struct iosb
 { /* i/o status block */
 unsigned short status; /* i/o completion status */
 unsigned short bytcnt; /* bytes transferred if read/write */
 void *details; /* address of buffer or parameter */
 };

struct itemlst_2

69

Chapter 2. Writing Network Applications

 { /* item-list 2 descriptor/element */
 unsigned short length; /* length */
 unsigned short type; /* parameter type */
 void *address; /* address of item list */
 };

struct itemlst_3
 { /* item-list 3 descriptor/element */
 unsigned short length; /* length */
 unsigned short type; /* parameter type */
 void *address; /* address of item list */
 unsigned int *retlen; /* address of returned length */
 };

struct sockchar
 { /* socket characteristics */
 unsigned short prot; /* protocol */
 unsigned char type; /* type */
 unsigned char af; /* address format */
 };

int main(void)
{
 int optval = 1; /* reuseaddr option value (on) */

 struct iosb iosb; /* i/o status block */
 unsigned int status; /* system service return status */

 unsigned short conn_channel; /* connect inet device i/o channel */

 unsigned short listen_channel; /* listen inet device i/o channel */
 struct sockchar listen_sockchar; /* listen socket characteristics */

 unsigned int cli_addrlen; /* returned length of client socket */
 /* address structure */
 struct sockaddr_in cli_addr; /* client socket address structure */
 struct itemlst_3 cli_itemlst; /* client socket address item-list */

 struct sockaddr_in serv_addr; /* server socket address structure */
 struct itemlst_2 serv_itemlst; /* server socket address item-list */

 struct itemlst_2 sockopt_itemlst; /* server socket option item-list
 */
 struct itemlst_2 reuseaddr_itemlst; /* reuseaddr option item-list
 */

 char buf[] = "Hello, world!"; /* data buffer */
 int buflen = sizeof(buf); /* length of data buffer */

 $DESCRIPTOR(inet_device, /* string descriptor with logical */
 "TCPIP$DEVICE:"); /* name of network pseudodevice */

 /*
 * initialize socket characteristics
 */

 listen_sockchar.prot = TCPIP$C_TCP;

70

Chapter 2. Writing Network Applications

 listen_sockchar.type = TCPIP$C_STREAM;
 listen_sockchar.af = TCPIP$C_AF_INET;

 /*
 * initialize reuseaddr's item-list element
 */

 reuseaddr_itemlst.length = sizeof(optval);
 reuseaddr_itemlst.type = TCPIP$C_REUSEADDR;
 reuseaddr_itemlst.address = &optval;

 /*
 * initialize setsockopt's item-list descriptor
 */

 sockopt_itemlst.length = sizeof(reuseaddr_itemlst);
 sockopt_itemlst.type = TCPIP$C_SOCKOPT;
 sockopt_itemlst.address = &reuseaddr_itemlst;

 /*
 * initialize client's item-list descriptor
 */

 cli_itemlst.length = sizeof(cli_addr);
 cli_itemlst.type = TCPIP$C_SOCK_NAME;
 cli_itemlst.address = &cli_addr;
 cli_itemlst.retlen = &cli_addrlen;

 /*
 * initialize server's item-list descriptor
 */

 serv_itemlst.length = sizeof(serv_addr);
 serv_itemlst.type = TCPIP$C_SOCK_NAME;
 serv_itemlst.address = &serv_addr;

 /*
 * initialize server's socket address structure
 */

 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = TCPIP$C_AF_INET;
 serv_addr.sin_port = htons(SERV_PORTNUM);
 serv_addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;

 /*
 * assign i/o channels to network device
 */

 status = sys$assign(&inet_device, /* device name */
 &listen_channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (status & STS$M_SUCCESS)
 status = sys$assign(&inet_device, /* device name */
 &conn_channel, /* i/o channel */

71

Chapter 2. Writing Network Applications

 0, /* access mode */
 0 /* not used */
);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to assign i/o channel(s)\n");
 exit(status);
 }

 /*
 * create a listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &listen_sockchar, /* p1 - socket characteristics */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to create socket\n");
 exit(status);
 }

 /*
 * bind server's ip address and port number to listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 &sockopt_itemlst, /* p5 - socket options */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

72

Chapter 2. Writing Network Applications

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to set socket option\n");
 exit(status);
 }

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 &serv_itemlst, /* p3 - local socket name */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to bind socket\n");
 exit(status);
 }

 /*
 * set socket as a listen socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 SERV_BACKLOG, /* p4 - connection backlog */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to set socket passive\n");
 exit(status);
 }

 /*
 * accept connection from a client

73

Chapter 2. Writing Network Applications

 */

 printf("Waiting for a client connection on port: %d\n",
 ntohs(serv_addr.sin_port)
);

 status = sys$qiow(EFN$C_ENF, /* event flag */
 listen_channel, /* i/o channel */
 IO$_ACCESS|IO$M_ACCEPT,
 /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 &conn_channel, /* p4 - i/o channel for new */
 /* connection */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to accept client connection\n");
 exit(status);
 }

 /*
 * log client connection request
 */

 memset(&cli_addr, 0, sizeof(cli_addr));

 status = sys$qiow(EFN$C_ENF, /* event flag */
 conn_channel, /* i/o channel */
 IO$_SENSEMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 &cli_itemlst, /* p4 - peer socket name */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to get client name\n");
 exit(status);

74

Chapter 2. Writing Network Applications

 }

 printf("Accepted connection from host: %s, port: %d\n",
 inet_ntoa(cli_addr.sin_addr), ntohs(cli_addr.sin_port)
);

 /*
 * write data to connection
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 conn_channel, /* i/o channel */
 IO$_WRITEVBLK, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 buf, /* p1 - buffer address */
 buflen, /* p2 - buffer length */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to write data to connection\n");
 exit(status);
 }

 printf("Data sent: %s\n", buf);

 exit(EXIT_SUCCESS);
}

This example uses OpenVMS system services to transmit a single buffer of data.

The $QIO(IO$_ACCESS|IO$M_ACCEPT) function establishes the connection with the client.

The IO$WRITEVBLK function specifies the address of the return buffer in p1, and the length of
the return buffer in p2.

You can also specify a list of write buffers by omitting the p1 and p2 parameters and instead
passing the list of buffers as the p5 parameter.

When writing a list of buffers, the p5 parameter is used; when reading a list, the p6 parameter is
used. For information about specifying input parameter lists, see Section 5.5.1, "Specifying an Input
Parameter List".

2.14. Writing OOB Data (TCP Protocol)
If your application uses TCP, you can send out-of-band (OOB) data to a remote process. At the remote
process, the message is delivered to the user through either the data receive or the OBB data receive
mechanism. You can write only 1 byte of OOB data at a time.

75

Chapter 2. Writing Network Applications

2.14.1. Writing OOB Data (Sockets API)
To send OOB data to a remote process, use the MSG_OOB flag with the send(), sendmsg(), and
sendto() functions.

Example 2.22, "Writing OOB Data (Sockets API)" shows a TCP server using the MSG_OOB flag with
the send() routine.

Example 2.22. Writing OOB Data (Sockets API)

/* This program accepts a connection on TCP port 1234, sends the string,
 "Hello, world!", waits two seconds, sends an urgent BEL (^G), waits
 another two seconds, repeats the Hello message, and terminates. */

#include <types.h>
#include <in.h>
#include <socket.h>
#include <unixio.h>

#define PORTNUM 123

main() {
 struct sockaddr_in lcladdr;
 int r, s, one = 1;
 char *message = "Hello, world!\r\n",
 *oob_message = "\007";
 memset()

 lcladdr.sin_family = AF_INET;
 lcladdr.sin_addr.s_addr = INADDR_ANY;
 lcladdr.sin_port = htons(PORTNUM);
 if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) perror("socket");
 if (setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)))
 perror("setsockopt");
 if (bind(s, &lcladdr, sizeof(lcladdr))) perror("bind");
 if (listen(s, 1)) perror("listen");
 if ((r = accept(s, 0, 0)) < 0) perror("accept");
 if (send(r, message, strlen(message), 0) != strlen(message))
 perror("send");
 sleep(2);
 if (send(r, oob_message, strlen(oob_message), MSG_OOB) !=
 strlen(oob_message)) perror("send");
 sleep(2);
 if (send(r, message, strlen(message), 0) != strlen(message))
 perror("send");
 sleep(2);
 if (close(r)) perror("close");
 if (close(s)) perror("close");
}

The send() routine is used to send OOB data to a remote socket, as follows:

r specifies the remote socket descriptor connected to the local socket as a result of a call to the
socket() routine.

oob_message is the buffer containing the OOB data.

76

Chapter 2. Writing Network Applications

strlen(oob_message) specifies the length, in bytes, of the buffer containing the out-of-band
data.

MSG_OOB is the flag that indicates the data will be sent out of band.

2.14.2. Writing OOB Data (System Services)
To send out-of-band data to a remote process, use the IO$_WRITEVBLK function with the IO
$M_INTERRUPT modifier. Example 2.23, "Writing OOB Data (System Services)" shows a TCP server
using the TCPIP$C_MSG_OOB flag.

Example 2.23. Writing OOB Data (System Services)

/*
**
** Attempt to send Out Of Band data to a previously established network
** connection. Use the function code of IO$_WRITEVBLK, passing the address
** of the buffer to P1, and the OOB code, TCPIP$C_MSG_OOB, to P4.
**
*/
 OOBBuff = 7;
 sysSrvSts = sys$qiow(0, /* efn.v | 0 */
 IOChannel, /* chan.v */
 IO$_WRITEVBLK, /* func.v */
 &iosb, /* iosb.r | 0 */
 0, 0, /* astadr, astprm: UNUSED */
 &OOBBuff, /* p1.r IO buffer */
 1, /* p2.v IO buffer size */
 0, /* p3 UNUSED */
 TCPIP$C_MSG_OOB, /* p4.v IO options flag */
 0, 0 /* p5, p6 UNUSED */
);

 if(((sysSrvSts & 1) != 1) || /* Validate the system service status.
 */
 ((iosb.cond_value & 1) != 1)) /* Validate the IO status. */
 {
 cleanup(IOChannel);
 errorExit(sysSrvSts, iosb.cond_value);
 }
 else
 if(iosb.count == 0)
 printf(" FAILED to send the OOB message, no connection.
\n");
 else
 printf(" SUCCEEDED in sending the OOB message.\n");

This example writes the data that is in the buffer.

Use the IO$_WRITEVBLK function to send OOB data.

Specify the buffer address of the OOB data in p1 and the length of the buffer in p2.

Specify the TCPIP$C_MSG_OOB flag to indicate the type of data, in p4.

77

Chapter 2. Writing Network Applications

2.15. Sending Datagrams (UDP Protocol)
An application that uses UDP can send a datagram to a remote host, send broadcast datagrams to
multiple remote hosts, or send multicast datagrams to members of a group.

With broadcasting, you send datagrams in one operation to multiple remote hosts on the specified
subnetwork. With multicasting, you send datagrams in one operation to all hosts that are members of a
particular group. The member hosts can be located on the local network or on remote networks, as long
as the routers are configured to support multicasting.

2.15.1. Sending Datagrams (System Services)
You can use either of the following methods to send datagrams:

● To send datagrams from the local host to one remote host, use the $QIO system service with the IO
$_ACCESS modifier. This allows you to specify the remote socket name once, and then to use the
IO$_WRITEVBLK routine to send each datagram without specifying the socket name again.

● To send datagrams from the local host to several remote hosts, use the $QIO system service with the
IO$_WRITEVBLK routine, and specify the remote socket name in the p3 argument field.

2.15.2. Sending Broadcast Datagrams (Sockets API)
You can broadcast datagrams by calling the sendto() function.

2.15.3. Sending Broadcast Datagrams (System
Services)
To broadcast datagrams, use a $QIO system service command with the IO$_WRITEVBLK routine.

Before issuing broadcast messages, the application must issue the IO$_SETMODE function. This sets
the broadcast option in the socket. The process must have SYSPRV, BYPASS, or OPER privilege to
issue broadcast messages. However, the system manager can disable privilege checking by using the
management command SET PROTOCOL UDP /BROADCAST. For more information, refer to the VSI
TCP/IP Services for OpenVMS Management Command Reference guide.

2.15.4. Sending Multicast Datagrams
To send IP multicast datagrams, specify the IP destination address in the range of 224.0.0.0 to
239.255.255.255 using the IO$_WRITEVBLK routine or the sendto() Sockets API function. Make
sure you include the IN.H header file.

The system maps the specified IP destination address to the appropriate Ethernet or FDDI multicast
address before it transmits the datagram.

You can control multicast options by specifying the following arguments to the setsockopt()
Sockets API, or the IO$SETMODE system service.

● Time to Live (TTL)

IP_MULTICAST_TTL (Sockets API)

TCPIP$C_IP_MULTICAST_TTL (OpenVMS system services)

78

Chapter 2. Writing Network Applications

Specifies the distance the multicast datagrame will travel as an integer value between 0 and 255.

Value Result

0 Restricts distribution to applications running on the local host.
1 Forwards the multicast datagram to hosts on the local subnet.
1 – 255 With a multicast router attached to the sending host's network, forwards multicast

datagrams beyond the local subnet.

Multicast routers forward the datagram to known networks that have hosts belonging to
the specified multicast group. The TTL value is decremented by each multicast router in
the path. When the TTL value reaches 0, the datagram is no longer forwarded.

For example:

u_char ttl;
ttl=2;

if (setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl,
 sizeof(ttl)) == -1)
 perror("setsockopt");

● Multicast interface

IP_MULTICAST_IF (Sockets API)

TCPIP$C_MULTICAST_IF (OpenVMS system services)

Specifies a network interface other than that specified by the route in the kernel routing table.

Unless the application specifies that an alternate network interface is associated with the socket, the
datagram addressed to an IP multicast destination is transmitted from the default network interface.
The default interface is determined by the interface associated with the default route in the kernel
routing table or by the interface associated with an explicit route, if one exists.

For example:

int sock;

struct in_addr ifaddress;

char *if_to_use = "16.141.64.251";
.
.
.

 ifaddress.s_addr = inet_addr(if_to_use);

 if (setsockopt(sock, IPPROTO_IP, IP_MULTICAST_IF, &ifaddress,

 sizeof(ifaddress)) == -1)

 perror ("error from setsockopt IP_MULTICAST_IF");

 else

79

Chapter 2. Writing Network Applications

 printf ("new interface set for sending multicast datagrams\n");

● Disable loopback

IP_MULTICAST_LOOP (Sockets API)

TCPIP$C_MULTICAST_LOOP (OpenVMS system services)

If a multicast datagram is sent to a group of which the sending host is a member, a copy of the
datagram is looped back by the IP layer for local delivery (default). To disable loopback delivery,
specify the loop value as 0.

For example:

u_char loop=0;
if (setsockopt(sock, IPPROTO_IP, IP_MULTICAST_LOOP, &loop
 sizeof(loop)) == -1)
 perror("setsockopt");

To enable loopback delivery, specify a loop value of 1. For improved performance, VSI
recommends that you disable loopback unless the host must receive copies of the datagrams.

For a complete list of socket options, see Appendix A, "Socket Options".

2.16. Using the Berkeley Internet Name
Domain Service
The Berkeley Internet Name Domain (BIND) service is a host name and address lookup service for the
Internet. If BIND is enabled on your system, you can make a call to the BIND resolver to obtain host
names and addresses.

Typically, you make a call to the BIND resolver either before you bind a socket or before you make a
connection to a socket. You can also use this service to translate either the local or remote host name to
an address before making a connection.

2.16.1. BIND Lookups (Sockets API)
If the BIND resolver is enabled on your system and the host name is not found in the local database, you
can use either of the following functions to search the BIND database:

● gethostbyaddr() gets a host record from the local host or BIND database when given the host
address.

● gethostbyname() gets a host record from the local host or BIND database when given the host
name.

The host record contains both name and address information.

Example 2.24, "BIND Lookup (Sockets API)" shows how to use the gethostname(),
gethostbyname(), and gethostbyaddr() functions to find a local host name and address.

Example 2.24. BIND Lookup (Sockets API)

#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */

80

Chapter 2. Writing Network Applications

#include <netdb.h> /* define network database library info */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */

int main(void)
{
 char host[1024];
 struct in_addr addr;
 struct hostent *hptr;

 /*
 * get name of local host
 */
 if ((gethostname(host, sizeof(host))) < 0)
 {
 perror("Failed to get host's local name");
 exit(EXIT_FAILURE);
 }

 printf("Local hostname: %s\n", host);

 /*
 * lookup local host record by name
 */

 if (!(hptr = gethostbyname(host)))
 {
 perror("Failed to find record for local host");
 exit(EXIT_FAILURE);
 }

 addr.s_addr = *(int *) hptr->h_addr;
 printf("Official hostname: %s address: %s\n",
 hptr->h_name, inet_ntoa(addr));

 /*
 * lookup local host record by address
 */

 hptr = gethostbyaddr(&addr.s_addr, sizeof(addr.s_addr), AF_INET);
 if (!hptr)
 {
 perror("Failed to find record for local host");
 exit(EXIT_FAILURE);
 }

 printf("Back-translated hostname: %s\n", hptr->h_name);

 exit(EXIT_SUCCESS);
}

In this example, the following functions and arguments were used to find a local host name and address:

gethostname() gets the local host name.

host is the address of the buffer that receives the host name.

sizeof(host) is the size of the buffer that receives the host name.

81

Chapter 2. Writing Network Applications

gethostbyname() looks for the host record that has the specified name.

On successful return of the gethostbyname() function, hptr receives the address of a
hostent structure containing the host name, alias names, host address type, length of address (4
or 16), and an array of IPv4 addresses of the host being sought gethostbyaddr() looks for
the host record that has the specified address.

addr.s_addr specifies the address of the host being sought. It points to a series of bytes in
network order, not to an ASCII string.

sizeof(addr.s_addr) specifies the number of bytes in the address to which the first
argument points.

AF_INET points to the IPv4 Internet address family.

2.16.2. BIND Lookups (System Services)
If BIND is enabled on your system, the IO$_ACPCONTROL system service searches the BIND
database for the host name if it does not find the name in the local host database.

Example 2.25, "BIND Lookup (System Services)" shows how to use OpenVMS system services to find a
host name and address.

Example 2.25. BIND Lookup (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define 'EFN$C_ENF' event flag */
#include <in.h> /* define internet related constants, */
 /* functions, and structures */
#include <inet.h> /* define network address info */
#include <iodef.h> /* define i/o function codes */
#include <netdb.h> /* define network database library info */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <string.h> /* define string handling functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
 /* structures, and functions */

struct iosb
 { /* i/o status block */
 unsigned short status; /* i/o completion status */
 unsigned short bytcnt; /* bytes transferred if read/write */
 void *details; /* address of buffer or parameter */
 };

struct acpfunc
 { /* acp subfunction */
 unsigned char code; /* subfunction code */
 unsigned char type; /* call code */
 unsigned short reserved; /* reserved (must be zero) */
 };

82

Chapter 2. Writing Network Applications

int main(void)
{
 char host[1024];
 char hostent[2048];
 struct in_addr addr;
 struct hostent *hptr;

 struct iosb iosb; /* i/o status block */
 unsigned int status; /* system service return status */
 unsigned short channel; /* network device i/o channel */

 struct acpfunc func_byaddr = /* acp gethostbyaddr function code
 */
 { INETACP_FUNC$C_GETHOSTBYADDR, INETACP$C_HOSTENT_OFFSET, 0 };

 struct acpfunc func_byname = /* acp gethostbyname function code */
 { INETACP_FUNC$C_GETHOSTBYNAME, INETACP$C_HOSTENT_OFFSET, 0 };

 struct dsc$descriptor p1_dsc = /* acp function descriptor */
 { 0, DSCK_CLASS_S, DSCK_DTYPE_T, 0 };

 struct dsc$descriptor p2_dsc = /* acp p2 argument descriptor */
 { 0, DSCK_CLASS_S, DSCK_DTYPE_T, 0 };

 struct dsc$descriptor p4_dsc = /* acp p4 argument descriptor */
 { 0, DSCK_CLASS_S, DSCK_DTYPE_T, 0 };

 $DESCRIPTOR(inet_device, /* string descriptor with logical */
 "TCPIP$DEVICE:"); /* name of network pseudodevice */

 /*
 * get name of local host
 */

 if ((gethostname(host, sizeof(host))) < 0)
 {
 perror("Failed to get host's local name");
 exit(EXIT_FAILURE);
 }

 printf("Local hostname: %s\n", host);

 /*
 * assign i/o channel to network device
 */

 status = sys$assign(&inet_device, /* device name */
 &channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to assign i/o channel\n");
 exit(status);
 }

83

Chapter 2. Writing Network Applications

 /*
 * lookup local host record by name
 */

 p1_dsc.dsc$w_length = sizeof(func_byname);
 p1_dsc.dsc$a_pointer = (char *) &func_byname;

 p2_dsc.dsc$w_length = strlen(host);
 p2_dsc.dsc$a_pointer = host;

 p4_dsc.dsc$w_length = sizeof(hostent);
 p4_dsc.dsc$a_pointer = hostent;

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_ACPCONTROL, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &p1_dsc, /* p1 - acp subfunction code */
 &p2_dsc, /* p2 - hostname to lookup */
 &p4_dsc.dsc$w_length,/* p3 - return length address
 */
 &p4_dsc, /* p4 - output buffer address */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to find record for local host\n");
 exit(status);
 }

 hptr = (struct hostent *) hostent;
 hptr->h_name += (unsigned int) hptr;
 *(char **) &hptr->h_addr_list += (unsigned int) hptr;
 *(char **) hptr->h_addr_list += (unsigned int) hptr;

 addr.s_addr = *(int *) hptr->h_addr;
 printf("Official hostname: %s address: %s\n",
 hptr->h_name, inet_ntoa(addr));

 /*
 * lookup local host record by address
 */

 p1_dsc.dsc$w_length = sizeof(func_byaddr);
 p1_dsc.dsc$a_pointer = (char *) &func_byaddr;

 p2_dsc.dsc$w_length = strlen(inet_ntoa(addr));
 p2_dsc.dsc$a_pointer = inet_ntoa(addr);

 p4_dsc.dsc$w_length = sizeof(hostent);
 p4_dsc.dsc$a_pointer = hostent;

84

Chapter 2. Writing Network Applications

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_ACPCONTROL, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &p1_dsc, /* p1 - acp subfunction code */
 &p2_dsc, /* p2 - ip address to lookup */
 &p4_dsc.dsc$w_length,/* p3 - return length address
 */
 &p4_dsc, /* p4 - output buffer address */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to find record for local host\n");
 exit(status);
 }

 hptr = (struct hostent *) hostent;
 hptr->h_name += (unsigned int) hptr;

 printf("Back-translated hostname: %s\n", hptr->h_name);

 /*
 * deassign i/o channel to network device
 */

 status = sys$dassgn(channel);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to deassign i/o channel\n");
 exit(status);
 }

 exit(EXIT_SUCCESS);
}

This example looks up nodes by either host name or IP address.

Structure setup for IO$_ACPCONTROL parameter p1.

Address and size of buffer to receive network information.

The first call to the IO$_ACPCONTROL service specifies the host name in argument p2.

The second call to the IO$_ACPCONTROL service specifies the IP address in argument p2.

85

Chapter 2. Writing Network Applications

2.17. Closing and Deleting a Socket
Closing a socket means that the program can no longer transmit data. Depending on how you close the
socket, the program can receive data until the peer program also closes the socket.

When a remote system closes a socket, notification is not immediate, and another thread can erroneously
attempt to use the socket.

If you send data to a closed socket, you might not receive an appropriate error message. Set the TCPIP
$FULL_DUPLEX_CLOSE socket option if you want to have your application notified of an error when
it sends data on a socket that has already been closed by the peer.

When you delete a socket, all pending messages queued for transmission are sent to the receiving socket
before closing the connection.

2.17.1. Closing and Deleting (Sockets API)
Example 2.26, "Closing and Deleting a Socket (Sockets API)" shows a TCP application using the
close() function to close and delete a socket.

Example 2.26. Closing and Deleting a Socket (Sockets API)

#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <unixio.h> /* define unix i/o */

int main(void)
{
 int sockfd;

 /*
 * create a socket
 */

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

 /*
 * close socket
 */

 if (close(sockfd) < 0)
 {
 perror("Failed to close socket");
 exit(EXIT_FAILURE);
 }

 exit(EXIT_SUCCESS);
}

This example creates and closes a socket.

86

Chapter 2. Writing Network Applications

The sockfd argument for the close() function closes the socket and deletes the socket
descriptor previously defined by the socket() function.

2.17.2. Closing and Deleting (System Services)
Example 2.27, "Closing and Deleting a Socket (System Services)" shows a TCP application using $QIO
system services to close and delete a socket.

Example 2.27. Closing and Deleting a Socket (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define 'EFN$C_ENF' event flag */
#include <iodef.h> /* define i/o function codes */
#include <ssdef.h> /* define system service status codes */
#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
 /* structures, and functions */

struct iosb
 { /* i/o status block */
 unsigned short status; /* i/o completion status */
 unsigned short bytcnt; /* bytes transferred if read/write */
 void *details; /* address of buffer or parameter */
 };

struct sockchar
 { /* socket characteristics */
 unsigned short prot; /* protocol */
 unsigned char type; /* type */
 unsigned char af; /* address format */
 };

int main(void)
{
 struct iosb iosb; /* i/o status block */
 unsigned int status; /* system service return status */
 unsigned short channel; /* network device i/o channel */
 struct sockchar sockchar; /* socket characteristics buffer */
 $DESCRIPTOR(inet_device, /* string descriptor with logical */
 "TCPIP$DEVICE:"); /* name of network pseudodevice */

 /*
 * initialize socket characteristics
 */

 sockchar.prot = TCPIP$C_TCP;
 sockchar.type = TCPIP$C_STREAM;
 sockchar.af = TCPIP$C_AF_INET;

 /*
 * assign i/o channel to network device
 */

87

Chapter 2. Writing Network Applications

 status = sys$assign(&inet_device, /* device name */
 &channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to assign i/o channel\n");
 exit(status);
 }

 /*
 * create a socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &sockchar, /* p1 - socket characteristics */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to create socket\n");
 exit(status);
 }

 /*
 * close socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_DEACCESS, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

88

Chapter 2. Writing Network Applications

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to close socket\n");
 exit(status);
 }

 /*
 * deassign i/o channel to network device
 */

 status = sys$dassgn(channel);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to deassign i/o channel\n");
 exit(status);
 }

 exit(EXIT_SUCCESS);
}

This example closes the socket using the IO$_DEACCESS service and deletes it with the $DASSGN
service.

The IO$_DEACCESS service stops transmitting data and closes the socket.

The $DASSGN service deletes the network device and deassigns the I/O channel previously
acquired with the $ASSIGN service.

2.18. Shutting Down Sockets
You can shut down a socket before closing and deleting it. The shutdown operation allows you to
shut down communication one process at a time. This maintains unidirectional rather than the normal
bidirectional connections, allowing you to shut down communications on receive or transmit data queues,
or both. For example, if you no longer want to transmit data but want to continue receiving data, shut
down the transmit side of the socket connection and keep open the receive side.

2.18.1. Shutting Down a Socket (Sockets API)
Example 2.28, "Shutting Down a Socket (Sockets API)" shows a TCP application using the
shutdown() function.

Example 2.28. Shutting Down a Socket (Sockets API)

#include <socket.h> /* define BSD socket api */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <unixio.h> /* define unix i/o */

int main(void)
{
 int sockfd;

89

Chapter 2. Writing Network Applications

 /*
 * create a socket
 */

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

 /*
 * shutdown a socket
 */

 if (shutdown(sockfd, 2) < 0)
 {
 perror("Failed to shutdown socket connections");
 exit(EXIT_FAILURE);
 }

 /*
 * close socket
 */

 if (close(sockfd) < 0)
 {
 perror("Failed to close socket");
 exit(EXIT_FAILURE);
 }

 exit(EXIT_SUCCESS);
}

This example shows how to use the shutdown() function to shut down a socket.

The shutdown() function calls the socket descriptor (sockfd). The corresponding values are:

● 0 – Closes the receive socket queue.

● 1 – Shuts down the socket.

● 2 – Closes both the transmit and receive socket queues.

The close() function then closes the socket and deletes the socket descriptor.

2.18.2. Shutting Down a Socket (System Services)
Example 2.29, "Shutting Down a Socket (System Services)" shows a TCP server using the IO
$_DEACCESS function with the IO$M_SHUTDOWN function modifier to shut down all
communications. In this example, no data is received or transmitted and all queued data is discarded.

Example 2.29. Shutting Down a Socket (System Services)

#include <descrip.h> /* define OpenVMS descriptors */
#include <efndef.h> /* define 'EFN$C_ENF' event flag */
#include <iodef.h> /* define i/o function codes */
#include <ssdef.h> /* define system service status codes */

90

Chapter 2. Writing Network Applications

#include <starlet.h> /* define system service calls */
#include <stdio.h> /* define standard i/o functions */
#include <stdlib.h> /* define standard library functions */
#include <stsdef.h> /* define condition value fields */
#include <tcpip$inetdef.h> /* define tcp/ip network constants, */
 /* structures, and functions */

struct iosb
 { /* i/o status block */
 unsigned short status; /* i/o completion status */
 unsigned short bytcnt; /* bytes transferred if read/write */
 void *details; /* address of buffer or parameter */
 };

struct sockchar
 { /* socket characteristics */
 unsigned short prot; /* protocol */
 unsigned char type; /* type */
 unsigned char af; /* address format */
 };

int main(void)
{
 struct iosb iosb; /* i/o status block */
 unsigned int status; /* system service return status */
 unsigned short channel; /* network device i/o channel */
 struct sockchar sockchar; /* socket characteristics buffer */
 $DESCRIPTOR(inet_device, /* string descriptor with logical */
 "TCPIP$DEVICE:"); /* name of network pseudodevice */

 /*
 * initialize socket characteristics
 */

 sockchar.prot = TCPIP$C_TCP;
 sockchar.type = TCPIP$C_STREAM;
 sockchar.af = TCPIP$C_AF_INET;

 /*
 * assign i/o channel to network device
 */

 status = sys$assign(&inet_device, /* device name */
 &channel, /* i/o channel */
 0, /* access mode */
 0 /* not used */
);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to assign i/o channel\n");
 exit(status);
 }

 /*
 * create a socket

91

Chapter 2. Writing Network Applications

 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_SETMODE, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 &sockchar, /* p1 - socket characteristics */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to create socket\n");
 exit(status);
 }

 /*
 * shutdown a socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */
 channel, /* i/o channel */
 IO$_DEACCESS|IO$M_SHUTDOWN,
 /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 TCPIP$C_DSC_ALL, /* p4 - discard all packets */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to shutdown socket connections\n");
 exit(status);
 }

 /*
 * close socket
 */

 status = sys$qiow(EFN$C_ENF, /* event flag */

92

Chapter 2. Writing Network Applications

 channel, /* i/o channel */
 IO$_DEACCESS, /* i/o function code */
 &iosb, /* i/o status block */
 0, /* ast service routine */
 0, /* ast parameter */
 0, /* p1 */
 0, /* p2 */
 0, /* p3 */
 0, /* p4 */
 0, /* p5 */
 0 /* p6 */
);

 if (status & STS$M_SUCCESS)
 status = iosb.status;

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to close socket\n");
 exit(status);
 }

 /*
 * deassign i/o channel to network device
 */

 status = sys$dassgn(channel);

 if (!(status & STS$M_SUCCESS))
 {
 printf("Failed to deassign i/o channel\n");
 exit(status);
 }

 exit(EXIT_SUCCESS);
}

This example shuts down a socket without completing pending I/O operations.

To shut down a socket, use the IO$_DEACCESS service with the IO$M_SHUTDOWN modifier.
This shuts down all or part of the full-duplex connection on the socket.

In p4, the TCPIP$C_DSC_ALL flag specifies that pending I/O operations be discarded.

After the IO$_DEACCESS service completes, messages can no longer be transmitted or received on the
socket.

2.19. Canceling I/O Operations
The $CANCEL system service cancels pending I/O requests on a specific channel Or socket. This
includes all I/O requests queued and in progress.

There is no Sockets API function for this operation; the Sockets API library functions are synchronous.

93

Chapter 2. Writing Network Applications

94

Chapter 3. Using the Sockets API
This chapter describes how to use the Sockets API functions.

3.1. Internet Protocols
The IP (Internet Protocol) family is a collection of protocols on the Transport layer that use the Internet
address format. The two basic Internet protocols are:

● TCP (Transmission Control Protocol)

● UDP (User Datagram Protocol)

The TCP/IP protocol suite has been extended beyond the basic 32-bit addressing capabilities of IPv4.
With the new IPv6 protocol, the address size is increased to 128 bits. The basic syntax of socket
functions remains the same, with extensions to the basic sockets API and advanced sockets application
programming interfaces.

The following sections describe the basic TCP and UDP protocols, including the extensions provided for
IPv6.

3.1.1. TCP Sockets
TCP provides reliable, flow-controlled, two-way transmission of data. A byte-stream protocol used to
support the SOCK_STREAM abstraction, TCP uses standard IP address formats and provides a per-host
collection of port addresses. Thus, each address consists of an internet address specifying the host and
network, with a specific TCP port on the host identifying the peer entity.

Sockets using TCP are either active or passive, as described in Table 3.1, "TCP Socket Types".

Table 3.1. TCP Socket Types

Socket
Type

Description

Active Initiates connections to passive sockets. By default, TCP sockets are active.

Active sockets use the connect() function to initiate connections.
Passive Listens for connection requests from active sockets. To create a passive socket, use the

bind() function and then the listen() function.

Passive sockets use the accept() function to accept incoming connections.

If the server is running on a multihomed system, you can specify wildcard addressing.
Wildcard addressing allows a single server to provide service to clients on multiple
networks. (See Section 3.1.1.1, "Wildcard Addressing".)

3.1.1.1. Wildcard Addressing
When a server is running on a host that has more than one network interface installed, you can use
wildcard addressing to configure it to accept incoming connections on all the interfaces.

The wildcard address is the any-interface choice. You specify this address by setting the IP address in the
socket address structure to INADDR_ANY (for IPv4) or in6addr_any (for IPv6) before calling the
bind() function.

95

Chapter 3. Using the Sockets API

To create a socket that listens to all hosts on any network interface, perform these steps:

1. Bind the IP address (INADDR_ANY or in6addr_any). See Section 2.3, "Binding a Socket
(Optional for Clients)".

2. Specify the TCP port.

If you do not specify the port, the system assigns a unique port, starting at port number 49152. Once
connected, the socket's address is fixed by the peer entity's location.

The address assigned to the socket is the address associated with the network interface through which
packets from the peer are being transmitted and received. This address corresponds to the peer entity's
network.

TCP supports the setting of socket options with the setsockopt() function and the checking of
current option settings with the getsockopt() function. Under most circumstances, TCP sends data
when it is presented. When outstanding data has not been acknowledged, TCP gathers small amounts of
output and sends it in a single packet when an acknowledgment is received.

Note

For some clients, such as Microsoft Windows systems, which send a stream of mouse events that receive
no replies, this packetization can cause significant delays. TCP/IP Services provides the TCP_NODELAY
option (defined in the TCP.H header file) to manage this problem. Refer to Table A.2, "TCP Protocol
Options" for more information about setting this option. Note that this solution may cause an increase in
network traffic.

3.1.2. UDP Sockets
UDP is a protocol that supports the SOCK_DGRAM abstraction for the internet protocol family. UDP
sockets are connectionless and are normally used with the sendto() and recvfrom() functions.
You can also use the connect() function to establish the destination address for future datagrams;
then you use the read(), write(), send(), or recv() function to transmit or receive datagrams.

UDP address formats are identical to those used by TCP. In particular, UDP provides a port identifier in
addition to the normal internet address format. Note that the UDP port space is separate from the TCP
port space (for example, a UDP port cannot be connected to a TCP port). Also, you can send broadcast
packets (assuming the underlying network supports broadcasting) by using a reserved broadcast address.
This address is network-interface dependent. The SO_BROADCAST option must be set on the socket,
and the process must have SYSPRV, BYPASS, or OPER privilege for broadcasting to succeed.

3.2. Structures
This section describes, in alphabetical order, the structures you supply as arguments to the various
Sockets API functions. Table 3.2, "Structures for Sockets API" lists these structures.

Table 3.2. Structures for Sockets API

Structure Description

addrinfo This structure describes the type of socket, the
address family, and the protocol.

cmsghdr This structure describes ancillary data objects
transferred by the sendmsg() and recvmsg()
functions.

96

Chapter 3. Using the Sockets API

Structure Description

hostent This structure holds a canonical host name, alias
names, a host address type, the length of the
address, and a pointer to a list of host addresses.
This structure is a parameter value for host name
and address lookup functions.

in_addr This structure holds a 32-bit IPv4 address stored in
network byte order.

in6_addr This structure holds a 128-bit IPv6 address stored
in network byte order as an array of sixteen 8-bit
elements.

iovec This structure holds the beginning address and
length of an I/O buffer.

linger This structure holds option information for the
close function.

msghdr This structure holds the protocol address, the
size of the protocol address, a scatter-and-gather
array, the number of elements in the scatter-and-
gather array, ancillary data, the length of the
ancillary data, and returned flags. The structure is a
parameter of the recvmsg() and sendmsg()
functions.

netent This structure holds a network name, a list of
aliases associated with the network, and the
network number.

protoent This structure describes a protocol.
servent This structure describes a network service.
sockaddr The socket functions use this generic socket

address structure to function with any of the
supported protocol families.

sockaddr_in This IPv4 socket address structure holds the length
of the structure, the address family, either a TCP
or a UDP port number, and a 32-bit IPv4 address
stored in network byte order. The structure has a
fixed length of 16 bytes.

sockaddr_in6 This IPv6 socket address structure holds the length
of the structure, the address family, the transport
layer port number, a priority and flow label, and
a 128-bit IPv6 address. The structure has a fixed
length of 28 bytes.

timeval This structure holds a time interval specified in
seconds and microseconds.

3.2.1. addrinfo Structure
The addrinfo structure is defined in the NETDB.H header file, and consists of the following
components:

97

Chapter 3. Using the Sockets API

struct addrinfo {
 int ai_flags; /* input flags */
 int ai_family; /* protofamily for socket */
 int ai_socktype; /* socket type */
 int ai_protocol; /* protocol for socket */
 size_t ai_addrlen; /* length of socket-address */
 char *ai_canonname; /* service location canonical name */
 struct sockaddr *ai_addr; /* socket-address for socket */
 struct addrinfo *ai_next; /* pointer to next in list */
};

3.2.2. cmsghdr Structure
The cmsghdr structure describes ancillary data objects transferred by the sendmsg and recvmsg
functions.

The msg_control member of the msghdr data structure points to the ancillary data that are
contained in a cmsghdr structure. Typically, only one data object is passed in a cmsghdr structure.
However, the IPv6 advanced sockets API enables the sendmsg and recvmsg functions to pass
multiple objects. For information about using raw IPv6 sockets, see Section 3.6.1, "Using IPv6 Raw
Sockets".

The data structure is defined in the SOCKET.H header file.

The cmsghdr data structure consists of the following components

struct cmsghdr {
 socklen_t cmsg_len; /* #bytes, including this header */
 int cmsg_level; /* originating protocol */
 int cmsg_type; /* protocol-specific type */
 /* followed by unsigned char cmsg_data[]; */
};

3.2.3. hostent Structure
The hostent structure, defined in the NETDB.H header file, holds a host name, a list of aliases
associated with the network, and the network's number as specified in an internet address from the hosts
database.

The hostent structure definition is as follows:

struct hostent {
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses from name server */
};
#define h_addr h_addr_list[0] /* address, for backward compatibility */

The hostent structure members are as follows:

● h_name is a pointer to a null-terminated character string that is the official (canonical) name of the
host.

● h_aliases is a pointer to an array of pointers to alias names for the host.

98

Chapter 3. Using the Sockets API

● h_addrtype is the type of host address being returned (AF_INET or AF_INET6).

● h_length is the length, in bytes, of the address. (For IPv4, this value is 4 bytes.)

● h_addr_list is a pointer to an array of pointers to the network addresses for the host. Each host
address is represented by a series of bytes in network order. The list is terminated with a null pointer
value.

● h_addr is the first address in the h_addr_list.

3.2.4. in_addr Structure
The in_addr structure, defined in the IN.H header file, holds an IPv4 address. The address format can
be any of the supported internet address notation formats.

The in_addr structure definition is as follows:

struct in_addr {
 union {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
} S_un;
#define s_addr S_un.S_addr /* can be used for most tcp & ip code */
#define s_host S_un.S_un_b.s_b2 /* host on imp */
#define s_net S_un.S_un_b.s_b1 /* network */
#define s_imp S_un.S_un_w.s_w2 /* imp */
#define s_impno S_un.S_un_b.s_b4 /* imp # */
#define s_lh S_un.S_un_b.s_b3 /* logical host */
};

3.2.5. in6_addr Structure (IPv6)
The in6_addr structure, defined in the IN6.H header file, holds an IPv6 address. The address format
can be any of the supported internet address notation formats. The address is stored in network byte
order as an array of sixteen 8-bit elements.

The in6_addr structure definition is as follows:

 struct in6_addr {
 u_int8_t s6_addr[16]
 }

A wildcard address, defined in network byte order, has the following forms:

• A global variable, in6addr_any, that is an in6_addr structure.

• A symbolic constant, IN6ADDR_ANY_INIT, that can be used to initialize an in6_addr structure
only when it is declared.

A loopback address, defined in network byte order, has the following forms:

• A global variable, in6addr_loopback, that is an in6_addr structure.

• A symbolic constant, IN6ADDR_LOOPBACK_INIT, that can be used to initialize an in6_addr
structure only when it is declared.

99

Chapter 3. Using the Sockets API

3.2.6. iovec Structure
The iovec structure holds one scatter-and-gather buffer. Multiple scatter-and-gather buffer descriptors
are stored as an array of iovec elements.

The iovec structure definition is defined in the SOCKET.H header file.

The iovec structure definition is as follows:

struct iovec {
 char *iov_base;
 int iov_len;
}

The iovec structure members are as follows:

● iov_base is a pointer to a buffer.

● iov_len contains the size of the buffer to which iov_base points.

3.2.7. linger Structure
The linger structure, defined in the SOCKET.H header file, specifies the setting or resetting of the
socket option for the time interval that the socket lingers for data. The linger structure is supported
only by connection-based (SOCK_STREAM) sockets.

The linger structure definition is as follows:

struct linger {
 int l_onoff; /* option on/off */
 int l_linger; /* linger time */
};

The linger structure members are as follows:

● l_onoff=1 sets linger; l_onoff=0 resets linger.

● l_linger is the number of seconds to linger. (The default is 120 seconds, or 2 minutes.)

3.2.8. msghdr Structure
The msghdr structure specifies the buffer parameter for the recvmsg and sendmsg I/O functions.
The structure allows you to specify an array of scatter and gather buffers. The recvmsg function
scatters the data to several user receive buffers, and the sendmsg function gathers data from several
user transmit buffers before being transmitted.

The SOCKET.H header file defines the following structures for BSD Versions 4.3 and 4.4:

● omsghdr structure (BSD Version 4.3)

● msghdr structure (32- and 64-bit) (BSD Version 4.4)

3.2.8.1. BSD Version 4.3
The omsghdr structure definition for use with BSD Version 4.3 is as follows:

100

Chapter 3. Using the Sockets API

struct omsghdr {
 char *msg_name; /* protocol address */
 int msg_namelen; /* size of address */
 struct iovec *msg_iov; /* scatter/gather array */
 int msg_iovlen; /* number of elements in msg_iov */
 char *msg_accrights; /* access rights sent/received */
 int msg_accrightslen; /* length of access rights buffer */
};

The omsghdr structure members are as follows:

● msg_name is the address of the destination socket if the socket is not connected. If no address is
required, you can set this field to null.

● msg_namelen is the length of the msg_name field.

● msg_iov is an array of I/O buffer pointers of the iovec structure form. See Section 3.2.6, "iovec
Structure" for a description of the iovec structure.

● msg_iovlen is the number of buffers in the msg_iov array.

● msg_accrights points to a buffer containing access rights sent with the message.

● msg_accrightslen is the length of the msg_accrights buffer.

3.2.8.2. BSD Version 4.4
The msghdr structure definition for use with BSD Version 4.4 is as follows:

struct msghdr {
 void *msg_name; /* protocol address */
 int msg_namelen; /* size of address */
 struct iovec *msg_iov; /* scatter/gather array */
 int msg_iovlen; /* number of elements in msg_iov */
 void *msg_control; /* ancillary data; must be aligned
 for a cmsghdr structure */
 int msg_controllen; /* length of ancillary data buffer */
 int msg_flags; /* flags on received message */
};

The msghdr structure members are as follows:

● msg_name is the address of the destination socket if the socket is not connected. If no address is
required, you can set this field to null.

● msg_namelen is the length of the msg_name field.

● msg_iov is an array of I/O buffer pointers of the iovec structure form. See Section 3.2.6, "iovec
Structure" for a description of the iovec structure.

● msg_iovlen is the number of buffers in the msg_iov array.

● msg_control specifies the location of the optional ancillary data or control information.

● msg_controllen is the size of the ancillary data in the msg_control buffer.

● msg_flags, used only with the recvmsg function, is the value used by the kernel to drive its
receive processing.

101

Chapter 3. Using the Sockets API

3.2.9. netent Structure
The netent structure, defined in the NETDB.H header file, holds a network name, a list of aliases
associated with the network, and the network's number specified as an internet address from the network
database.

The netent structure definition is as follows:

struct netent {
 char *n_name; /* official name of net */
 char **n_aliases; /* alias list */
 int n_addrtype; /* net address type */
 long n_net; /* net number */
};

The netent structure members are as follows:

● n_name is the official network name.

● n_aliases is a null-terminated list of pointers to alternate names for the network.

● n_addrtype is the type of the network number returned (AF_INET or AF_INET6).

● n_net is the network number returned in host byte order.

3.2.10. protoent Structure
The protoent structure, defined in the NETDB.H header file, holds the description of the protocol
from the protocols table.

A protocol is described by the protoent structure, as follows:

struct protoent {
 char *p_name; /* official name of protocol */
 char **p_aliases; /* alias list */
 long p_proto; /* protocol number */
};

The members of this structure are:

p_name The official name of the protocol.
p_aliases A zero-terminated list of alternate names for the protocol.
p_proto The protocol number.

3.2.11. servent Structure
The servent structure, defined in the NETDB.H header file, specifies or obtains a service name, a list
of aliases associated with the service, and the service's number specified as an Internet address from the
services database. An entry in the services database is created with the following TCP/IP management
command:

SET SERVICE service

102

Chapter 3. Using the Sockets API

For more information, refer to the VSI TCP/IP Services for OpenVMS Management Command Reference
guide.

A service mapping is described by the servent structure, as follows:

struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port number, network byte order */
 char *s_proto; /* protocol to use */
};

The servent structure members are as follows:

● s_name is the official name of the service.

● s_aliases is a null-terminated list of pointers to alternate names for the service.

● s_port is the port number at which the service resides in network byte order.

● s_proto is the name of the protocol to use with the service.

The getservbyname() function maps service names to a servent structure by specifying a
service name and, optionally, a qualifying protocol.

3.2.12. sockaddr Structure
The sockaddr structure, defined in the SOCKET.H header file, holds a general address family.

The SOCKET.H header file defines the following structures for BSD Versions 4.3 and 4.4:

● osockaddr structure (BSD Version 4.3)

● sockaddr structure (BSD Version 4.4)

3.2.12.1. BSD Version 4.3
The osockaddr structure definition for use with BSD Version 4.3 is as follows:

 struct osockaddr {
 u_short sa_family; /* address family */
 char sa_data[14]; /* up to 14 bytes of direct address */
};

The osockaddr structure members are as follows:

● sa_family is the address family or domain in which the socket was created.

● sa_data is the data string of up to 14 bytes of direct address.

3.2.12.2. BSD Version 4.4
The sockaddr structure definition for use with BSD Version 4.4 is as follows:

 struct sockaddr {

103

Chapter 3. Using the Sockets API

 u_char sa_len; /* total length */
 u_char sa_family; /* address family */
 char sa_data[14]; /* up to 14 bytes of direct address */
};

The sockaddr structure members are as follows:

● sa_len is the length of the structure.

● sa_family is the address family or domain in which the socket was created.

● sa_data is the data string of up to 14 bytes of direct address.

3.2.13. sockaddr_in Structure
The sockaddr_in structure, defined in the IN.H header file, specifies an internet address family.

The sockaddr_in structure definition is as follows:

struct sockaddr_in {
 short sin_family; /* address family */
 u_short sin_port; /* port number */
 struct in_addr sin_addr; /* internet address */
 char sin_zero[8]; /* 8-byte field of all zeroes */
};

The sockaddr_in structure members are as follows:

● sin_family is the address family (AF_INET or AF_INET6).

● sin_port is the port number in network order.

● sin_addr is the internet address in network order.

● sin_zero is an 8-byte field containing all zeros.

3.2.14. sockaddr_in6 Structure (IPv6)
The sockaddr_in6 structure, defined in the IN6.H header file, defines an IPv6 socket address.

The IN6.H file defines the following structures depending on the setting of the _SOCKADDR_LEN
compilation symbol:

● sockaddr_in6 for BSD Version 4.3 (described in Section 3.2.14.1, "BSD Version 4.3").

● sockaddr_in6 for BSD Version 4.4 (described in Section 3.2.14.2, "BSD Version 4.4").

3.2.14.1. BSD Version 4.3

If an application does not define the _SOCKADDR_LEN compilation symbol, the compiler generates the
following BSD Version 4.3 structure:

struct sockaddr_in6 {
 sa_family_t sin6_family; /* AF_INET6 */

104

Chapter 3. Using the Sockets API

 in_port_t sin6_port; /* Transport layer port # */
 uint32_t sin6_flowinfo; /* IPv6 flow information */
 struct in6_addr sin6_addr; /* IPv6 address */
 uint32_t sin6_scope_id; /* set of interfaces for a scope */
};

The sockaddr_in6 structure members are as follows:

● sin6_family is the address family (AF_INET6).

● sin6_port is the transport layer port number stored in network byte order.

● sin6_flowinfo is the priority and flow label stored in network byte order.

● sin6_addr is the internet address stored in network byte order.

● sin6_scope_id is a 32-bit integer identifying a set of interfaces appropriate for the scope of
the address specified by the sin6_addr field. For a link scope, sin6_scope_id specifies an
interface index. For a site scope, sin6_scope_id specifies a site identifier.

3.2.14.2. BSD Version 4.4
If an application defines the _SOCKADDR_LEN compilation symbol, the compiler generates the
following BSD Version 4.4 structure.

struct sockaddr_in6 {
define SIN6_LEN
 uint8_t sin6_len; /* length of this struct */
 sa_family_t sin6_family; /* AF_INET6 */
 in_port_t sin6_port; /* Transport layer port # */
 uint32_t sin6_flowinfo; /* IPv6 flow information */
 struct in6_addr sin6_addr; /* IPv6 address */
 uint32_t sin6_scope_id; /* set of interfaces for a scope */
};

The sockaddr_in6 structure members are as follows:

● sin6_len is the length of this structure (28 bytes).

● sin6_family is the address family (AF_INET6).

● sin6_port is the transport layer port number stored in network byte order.

● sin6_flowinfo is the priority and flow label stored in network byte order.

● sin6_addr is the internet address stored in network byte order.

● sin6_scope_id is a 32-bit integer identifying a set of interfaces appropriate for the scope of
the address specified by the sin6_addr field. For a link scope, sin6_scope_id specifies an
interface index. For a site scope, sin6_scope_id specifies a site identifier.

3.2.15. timeval Structure
The timeval structure, defined in the SOCKET.H header file, specifies time intervals. The timeval
structure definition is as follows:

105

Chapter 3. Using the Sockets API

struct timeval {
 long tv_sec;
 long tv_usec;
};

The timeval structure members are as follows:

● tv_sec specifies the number of seconds to wait.

● tv_usec specifies the number of microseconds to wait.

3.3. Header Files
You can include header files on a OpenVMS system using any one of the following preprocessor
directive statements:

#include types
#include <types.h>
#include <sys/types.h>

The #include types form of the #include preprocessor directive is possible on OpenVMS
systems because all header files are located in a text library in the SYS$LIBRARY directory. On UNIX
systems, you must specify header files (and subdirectories that locate a header file) within angle brackets
(< >) or quotation marks (" ") .

For example, to include the header file TYPES.H on a UNIX system, use the following form of the
#include directive:

#include <sys/types.h>

3.4. Constants and Address Variables (IPv6)
Table 3.3, "Constants and Address Variables (IPv6)" lists the constants and address variables available
for use with the IPv6 structures.

Table 3.3. Constants and Address Variables (IPv6)

Entry Description

in6addr_any The wildcard address in network byte order for the
structure in6_addr.

IN6ADDR_ANY_INIT A symbolic constant used to initialize an
in6_addr structure when it is declared.

in6addr_loopback A loopback address defined in network byte order.
IN6ADDR_LOOPBACK_INIT A symbolic constant used to initialize an

in6_addr structure when it is declared.

3.5. Interface Identification (IPv6)
When TCP/IP Services initializes an interface, it assigns an integer known as an interface index to
identify the interface. This interface identification is used to determine the interface on which a datagram
is sent or received, or on which a multicast group is joined.

106

Chapter 3. Using the Sockets API

Table 3.4, "Interface Identification Functions" lists the functions related to handling the interface
identification.

Table 3.4. Interface Identification Functions

Function Description

if_nametoindex() Maps an interface name to its corresponding index.
if_indextoname() Maps an interface index to its corresponding name.
if_nameindex() Returns an array of all interface names and

indexes.
if_freenameindex() Frees dynamic memory allocated by

if_nameindex() to the array of interface
names and indexes.

3.5.1. Sending IPv6 Multicast Datagrams
To send IPv6 multicast datagrams, an application indicates the multicast group to send to by specifying
an IPv6 multicast address in a sendto() function. The system maps the specified IPv6 destination
address to the appropriate Ethernet or FDDI multicast address prior to transmitting the datagram.

An application can explicitly control multicast options with arguments to the setsockopt() function.
The following options can be set by an application using the setsockopt() function:

● Hop limit (IPV6_MULTICAST_HOPS)

The IPV6_MULTICAST_HOPS option to the setsockopt() function allows an application to
specify a value between 0 and 255 for the hop limit field.

Multicast datagrams with a hop limit value of 0 restrict distribution of the multicast datagram to
applications running on the local host. Multicast datagrams with a hop limit value of 1 are forwarded
only to hosts on the local link. If a multicast datagram has a hop limit value greater than 1 and a
multicast router is attached to the sending host's network, multicast datagrams can be forwarded
beyond the local link. Multicast routers forward the datagram to known networks that have hosts
belonging to the specified multicast group. The hop limit value is decremented by each multicast
router in the path. When the hop limit value is decremented to 0, the datagram is not forwarded
further.

The following example shows how to use the IPV6_MULTICAST_HOPS option to the
setsockopt() function:

u_char hops;
hops=2;

if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &hops,
 sizeof(hops)) < 0)
 perror("setsockopt: IPV6_MULTICAST_HOPS error");

● Multicast interface (IPV6_MULTICAST_IF)

A datagram addressed to an IPv6 multicast address is transmitted from the default network
interface unless the application specifies that an alternate network interface is associated with the
socket. The default interface is determined by the interface associated with the default route in the
kernel routing table or by the interface associated with an explicit route, if one exists. Using the

107

Chapter 3. Using the Sockets API

IPV6_MULTICAST_IF option to the setsockopt() function, an application can specify a
network interface other than that specified by the route in the kernel routing table.

The following example shows how to use the IPV6_MULTICAST_IF option to the
setsockopt() function to specify an interface other than the default:

u_int if_index = 1;
.
.
.
if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_IF, &if_index,
 sizeof(if_index)) < 0)
 perror ("setsockopt: IPV6_MULTICAST_IF error");
 else
 printf ("new interface set for sending multicast
 datagrams\n");

The if_index parameter specifies the interface index of the desired interface, or specifies 0 to select a
default interface. You can use the if_nametoindex() function to find the interface index.

● Disabling loopback of local delivery (IPV6_MULTICAST_LOOP)

If a multicast datagram is sent to a group that has the sending node as a member, a
copy of the datagram is, by default, looped back by the IP layer for local delivery. The
IPV6_MULTICAST_LOOP option to the setsockopt() function allows an application to
disable this loopback delivery.

The following example shows how to use the IPV6_MULTICAST_LOOP option to the
setsockopt() function:

u_char loop=0;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, &loop,
 sizeof(loop)) < 0)
 perror("setsockopt: IPV6_MULTICAST_LOOP error");

If the value of loop is 0, loopback is disabled; if the value of loop is 1, loopback is enabled. For
performance reasons, you should disable the default by setting loop to 0, unless applications on the
same host must receive copies of the datagrams.

3.5.2. Receiving IPv6 Multicast Datagrams
Before a node can receive IPv6 multicast datagrams destined for a particular multicast group other than
the All Nodes group, an application must direct the node to become a member of that multicast group.

This section describes how an application can direct a node to add itself to and remove itself from a
multicast group.

An application can direct the node it is running on to join a multicast group by using the
IPV6_JOIN_GROUP option to the setsockopt() function:

struct ipv6_mreq imr6;
.
.
.
imr6.ipv6mr_interface = if_index;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP,
 (char *)&imr6, sizeof(imr6)) < 0)

108

Chapter 3. Using the Sockets API

 perror("setsockopt: IPV6_JOIN_GROUP error");

The imr6 parameter has the following structure:

structipv6_mreq {
 struct in6_addr ipv6mr_multiaddr; /* IP multicast address of group */
 unsigned int ipv6mr_interface; /* local interface index */
 };

Each multicast group membership is associated with a particular interface. It is possible to join the
same group on multiple interfaces. The ipv6mr_interface variable can be specified with a value of 0,
which allows an application to choose the default multicast interface. Alternatively, specifying one
of the host's local interfaces allows an application to select a particular multicast-capable interface.
The maximum number of memberships that can be added on a single socket is subject to the
IPV6_MAX_MEMBERSHIPS value, which is defined in the IN6.H header file.

To drop membership from a particular multicast group, use the IPV6_LEAVE_GROUP option to the
setsockopt function:

struct ipv6_mreq imr6;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_LEAVE_GROUP, &imr6,
 sizeof(imr6)) < 0)
 perror("setsockopt: IPV6_LEAVE_GROUP error");

The imr6 parameter contains the same structure values used for adding membership.

If multiple sockets request that a node join a particular multicast group, the node remains a member of
that multicast group until the last of those sockets is closed.

To receive multicast datagrams sent to a specific UDP port, the receiving socket must be bound to
that port using the bind() function. More than one process can receive UDP datagrams destined for
the same port if the bind() function is preceded by a setsockopt() function that specifies the
SO_REUSEPORT option.

Delivery of IP multicast datagrams to SOCK_RAW sockets is determined by the protocol type of the
destination.

3.5.3. Address Translation and Conversion Functions
The following functions are available for node name to address translation:

Function Description

gethostbyname() Returns IPv4 addresses.
getaddrinfo() Protocol-independent function for mapping names

to addresses.
freeaddrinfo() Returns addrinfo() structures and dynamic

storage to the system.

The following functions are available for address to node name translation:

Function Description

gethostbyaddr() Returns a node name for an IPv4 address.

109

Chapter 3. Using the Sockets API

Function Description

getnameinfo() Protocol-independent function for mapping
addresses to names.

freeaddrinfo() Returns addrinfo() structures and dynamic
storage to the system.

The following address conversion functions convert both IPv4 and IPv6 addresses.

Function Description

inet_pton() Converts an address in its standard text
presentation form to its numeric binary form, in
network byte order.

inet_ntop() Converts a numeric address to a text string suitable
for presentation.

3.5.4. Address-Testing Macros
Table 3.5, "Summary of Address-Testing Macros" lists the currently defined address-testing macros and
the return value for a valid test. To use these macros, include the IN.H file in your application.

Table 3.5. Summary of Address-Testing Macros

Macro Return

IN6_IS_ADDR_UNSPECIFIED True, if specified type.
IN6_IS_ADDR_LOOPBACK True, if specified type.
IN6_IS_ADDR_MULTICAST True, if specified type.
IN6_IS_ADDR_LINKLOCAL True, if specified type.
IN6_IS_ADDR_SITELOCAL True, if specified type.
IN6_IS_ADDR_V4MAPPED True, if specified type.
IN6_IS_ADDR_V4COMPAT True, if specified type.
IN6_IS_ADDR_MC_NODELOCAL True, if specified scope.
IN6_IS_ADDR_MC_LINKLOCAL True, if specified scope.
IN6_IS_ADDR_MC_SITELOCAL True, if specified scope.
IN6_IS_ADDR_MC_ORGLOCAL True, if specified scope.
IN6_IS_ADDR_MC_GLOBAL True, if specified scope.
IN6_ARE_ADDR_EQUAL True, if addresses are equal.

3.6. Advanced API (IPv6)
The advanced API provides support for advanced applications that may need knowledge of IPv6
headers. These applications commonly use raw sockets to access IPv6 or ICMPv6 header fields. The
advanced interface provides the following:

● Support for portable interfaces for applications that use raw sockets under IPv6.

● Functions to access router headers.

110

Chapter 3. Using the Sockets API

● Functions to access option headers.

3.6.1. Using IPv6 Raw Sockets
Raw sockets are used in both IPv4 and IPv6 to bypass the TCP and UDP transport layers.

Table 3.6, "Differences Between IPv4 and IPv6 Raw Sockets" describes the principal differences between
IPv4 and IPv6 raw sockets.

Table 3.6. Differences Between IPv4 and IPv6 Raw Sockets

 IPv4 IPv6

Use Access ICMPv4, IGMPv4, and
to read and write IPv4 datagrams
that contain a protocol field the
kernel does not recognize.

Access ICMPv6 and to read and
write IPv6 datagrams that contain
a Next Header field the kernel
does not recognize.

Byte order Not specified. Network byte order for all data
sent and received.

Send and receive complete
packets

Yes No. Uses ancillary data objects
to transfer extension headers and
hop limit information.

For output, applications can modify all fields, except for the flow label field, by using ancillary data or
socket options, or both.

For input, applications can access all fields, except for the flow label, version number, and Next Header
fields, and all extension headers by using ancillary data.

For IPv6 raw sockets other than ICMPv6 raw sockets, the application must set the IPV6_CHECKSUM
socket option. For example:

int offset = 2;
setsockopt (fd, IPPROTO_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset));
 perror("setsockopt: IPV6_CHECKSUM error")

This enables the kernel to compute and store a checksum for output and to verify the checksum on input.
This relieves the application from having to perform source address selection on all outgoing packets.
This socket option is disabled by default. You can explicitly disable this option by setting the offset
variable to -1.

Using IPv6 raw sockets, an application can access the following information:

● ICMPv6 messages

● IPv6 header

● Routing header

● IPv6 options headers: hop-by-hop options header and destination options header

The following sections describe how to access this information.

3.6.1.1. Accessing ICMPv6 Messages

111

Chapter 3. Using the Sockets API

An ICMPv6 raw socket is a socket that is created by calling the socket() function with the
PF_INET6, SOCK_RAW, and IPPROTO_ICMPV6 arguments.

The kernel calculates and inserts the ICMPv6 checksum for all outbound ICMPv6 packets and verifies
the checksum for all received packets. If the received checksum is incorrect, the packet is discarded.

Because ICMPv6 is a superset of ICMPv4, an ICMPv6 raw socket can receive many more messages
than an ICMPv4 raw socket. By default, when you create an ICMPv6 raw socket, it passes all ICMPv6
message types to an application. An application, however, does not need access to all messages. An
application can specify the ICMPv6 message types it wants passed by creating an ICMPv6 filter.

The ICMPv6 filter has a datatype of struct icmp6_filter. Use getsockopt() to retrieve
the current filter and setsockopt() to store the filter. For example, to enable filtering of ICMPv6
messages, use the ICMP6_FILTER option, as follows:

struct icmp6_filter myfilter;

setsockopt (fd, IPPROTO_ICMPV6, IPV6_FILTER, &(myfilter), (sizeof)
(myfilter));
 perror("setsockopt: IPV6_FILTER error")

The value of myfilter is an ICMPv6 message type between 0 and 255.

Table 3.7, "ICMPv6 Filtering Macros" describes the ICMPv6 filter macros.

Table 3.7. ICMPv6 Filtering Macros

Macro Description

ICMP6_FILTER_SETPASSALL Passes all ICMPv6 messages to an application.
ICMP6_FILTER_SETBLOCKALL Blocks all ICMPv6 messages from being passed to

an application.
ICMP6_FILTER_SETPASS Passes ICMPv6 messages of a specified type to an

application.
ICMP6_FILTER_SETBLOCK Blocks ICMPv6 messages of a specified type from

being passed to an application.
ICMP6_FILTER_WILLPASS Returns true, if specified message type is passed to

application.
ICMP6_FILTER_WILLBLOCK Returns true, if the specified message type is

blocked from being passed to an application.

To clear an installed filter, call setsockopt() for the ICMP_FILTER option with a zero-length
filter.

The kernel does not perform any validity checks on message type, message content, or packet structure.
The application is responsible for checking them.

3.6.1.2. Accessing the IPv6 Header
When using IPv6 raw sockets, applications must be able to receive the IPv6 header content. To receive
this optional information, use the setsockopt() function with the appropriate socket option.

Table 3.8, "Optional Information and Socket Options" describes the socket options for receiving optional
information.

112

Chapter 3. Using the Sockets API

Table 3.8. Optional Information and Socket Options

Optional Information Socket Option cmsg_type

Source and destination IPv6
address, and sending and
receiving interface

IPV6_RECVPKTINFO IPV6_PKTINFO

Hop limit IPV6_RECVHOPLIMIT IPV6_HOPLIMIT

Routing header IPV6_RECVRTHDR IPV6_RTHDR

Hop-by-hop options IPV6_RECVHOPOPTS IPV6_HOPOPTS

Destination options IPV6_RECVDSTOPTS IPV6_DSTOPTS

The recvmsg() function returns the received data as one or more ancillary data objects in a
cmsghdr data structure.

To determine the value of a socket option, use the getsockopt() function with the corresponding
option. If the IPV6_RECVPKTINFO option is not set, the function returns an in6_pktinfo data
structure with ipi6_addr set to in6addr_any and ipi6_addr set to zero. For other options, the
function returns an option_len value of zero if there is no option value.

An application can receive the following IPv6 header information as ancillary data from incoming
packets:

● Destination IPv6 address

● Interface index

● Hop limit

The IPv6 address and interface index are contained in a in6_pktinfo data structure that is received
as ancillary data with the recvmsg() function. The in6_pktinfo data structure is defined in IN.H.
The tasks associated with the IPv6 header are:

● Receiving an IPv6 address

If the IPV6_RECVPKTINFO option is enabled, the recvmsg() function returns a
in6_pktinfo data structure as ancillary data. The ipi6_addr member contains the destination
IPv6 address from the received packet. For TCP sockets, the destination address is the local address
of the connection.

● Receiving an interface

If the IPV6_RECVPKTINFO option is enabled, the recvmsg() function returns a
in6_pktinfo data structure as ancillary data. The ipi6_ifindex member contains the
interface index of the interface that received the packet.

● Receiving a hop limit

If the IPV6_RECVHOPLIMIT option is enabled, the recvmsg() function returns a cmsghdr
data structure as ancillary data. The cmsg_type member is IPV6_HOPLIMIT and the
cmsg_data[] member contains the first byte of the integer hop limit.

3.6.1.3. Accessing the IPv6 Routing Header

113

Chapter 3. Using the Sockets API

The advanced Sockets API enables you to access the IPv6 routing header. The routing header is an
IPv6 extension header that enables an application to perform source routing. The type 0 routing header
supports up to 127 intermediate nodes, or 128 hops.

Table 3.9, "Socket Calls for Routing Header Name Description" describes the sockets calls that an
application uses to build and examine routing headers.

Table 3.9. Socket Calls for Routing Header Name Description

Function Description

inet6_rth_space() Returns the number of bytes required for a routing
header.

inet6_rth_init() Initializes buffer data for a routing header.
inet6_rth_add() Adds one address to a routing header.
inet6_rth_reverse() Reverses the order of fields in a routing header.
inet6_rth_segments() Returns the number of segments, or addresses, in a

routing header.
inet6_rth_getaddr() Fetches one address from a routing header.

The tasks associated with the routing header are:

● Receiving a routing header

To receive a routing header, an application calls setsockopt() with the IPV6_RECVRTHDR
option enabled.

For each received routing header, the kernel passes one ancillary data object in a cmsghdr
structure with the cmsg_type member set to IPV6_RTHDR. An application processes a
routing header by calling inet6_rth_reverse(), inet6_rth_segments(), and
inet6_rth_getaddr().

● Sending a routing header

To send a routing header, an application specifies the header either as ancillary data in a call to
sendmsg() or by calling setsockopt(). An application can remove a sticky routing header by
calling setsockopt() for the IPV6_RTHDR option and specifying an option length of zero.

When using ancillary data, the application sets the cmsg_level member to IPPROTO_IPV6
and the cmsg_type member to IPV6_RTHDR. Use the inet6_rth_space(),
inet6_rth_init(), and inet6_rth_add() functions to build the routing header.

When an application specifies a routing header, the destination address specified in a call to the
connect(), sendto(), or sendmsg() function is the final destination of the datagram.
Therefore, the routing header contains the addresses of all intermediate nodes.

The order of extension headers is static; therefore, an application can specify only one outgoing
routing header.

3.6.1.4. Accessing the IPv6 Options Headers
The advanced Sockets API enables applications to access the following IPv6 options headers:

● Hop-by-hop header

114

Chapter 3. Using the Sockets API

A single hop-by-hop options header can contain a variable number of hop-by-hop options. Each
option is encoded with a type, length, and value (TLV). The application uses sticky options or
ancillary data to communicate this information with the kernel.

● Destination header

One or more destination options headers can contain a variable number of destination options. A
destination options header appearing before a routing header is processed by the first and subsequent
destinations specified in the routing header. A destination option appearing after the routing header
is processed only by the final destination. Each option is encoded with a type, length, and value
(TLV). The application uses sticky options or ancillary data to communicate this information with
the kernel.

For additional information about the alignment requirements of the headers and ordering of the
extensions headers, see RFC 2460.

Table 3.10, "Socket Calls for Options Headers" lists the sockets calls that an application uses to build and
examine hop-by-hop and destination headers.

Table 3.10. Socket Calls for Options Headers

Function Description

inet6_opt_init() Initializes buffer data for options.
inet6_opt_append() Adds an option to the options header.
inet6_opt_finish() Finishes adding options to the options header.
inet6_opt_set_val() Adds one component of the option content to the

options header.
inet6_opt_next() Extracts the next option from the options header.
inet6_opt_find() Extracts an option of a specified type from the

options header.
inet6_opt_get_val() Retrieves one component of the option content

from the options header.

The tasks associated with the options headers are:

● Receiving hop-by-hop options

To receive a hop-by-hop options header, an application calls setsockopt() with the
IPV6_RECVHOPOPTS option enabled.

When using ancillary data, the kernel passes a hop-by-hop options header to the application
and sets the cmsg_level member to IPPROTO_IPV6 and the cmsg_type member to
IPV6_HOPOPTS.

An application retrieves these options by calling inet6_opt_next(), inet6_opt_find(),
and inet6_opt_get_val().

● Sending hop-by-hop options

To send a hop-by-hop options header, an application specifies the header either as ancillary data in
a call to sendmsg() or by calling setsockopt() An application can remove a sticky hop-by-

115

Chapter 3. Using the Sockets API

hop options header by calling setsockopt() for the IPV6_HOPOPTS option and specifying an
option length of zero (0).

When using ancillary data, all hop-by-hop options are specified by a single ancillary data object.
The application sets cmsg_level member to IPPROTO_IPV6 and the cmsg_type
member to IPV6_HOPOPTS. Use the inet6_opt_init(), inet6_opt_append(),
inet6_opt_finish(), and inet6_opt_set_val() calls to build the option header.

● Receiving destination options

To receive a destination options header, an application calls setsockopt() with the
IPV6_RECVDSTOPTS option enabled. The kernel passes each destination option to the application
as one ancillary data object and sets the cmsg_level member to IPPROTO_IPV6 and the
cmsg_type member to IPV6_DSTOPTS.

An application processes these options by calling inet6_opt_next(), inet6_opt_find(),
and inet6_opt_get_val().

● Sending destination options

To send a destination options header, an application specifies the header either as ancillary data in a
call to sendmsg() or by calling setsockopt().

An application can remove a sticky hop-by-hop options header by calling setsockopt() for
either the IPV6_RTHDRDSTOPTS or the IPV6_DSTOPTS option and specifying a option length
of zero (0).

The API assumes that the extension headers are in order. Only one set of destination options can
precede a routing header and only one set of destination options can follow a routing header.

Each set can contain one or more options, but each set is considered a single extension header.

When using ancillary data, the application passes a destination options header to the kernel in one of
the following ways:

• For destination options that precede a routing header, the application sets the cmsg_level
member to IPPROTO_IPV6 and the cmsg_type member to IPV6_RTHDRDSTOPTS. Any
setsockopt() or ancillary data is ignored unless the application explicitly specifies its own
routing header.

• For destination options that follow a routing header or when no routing header is specified, the
application sets the cmsg_level member to IPPROTO_IPV6 and the cmsg_type member
to IPV6_DSTOPTS.

An application builds these options by calling inet6_opt_init(), inet6_opt_append(),
inet6_opt_finish(), and inet6_opt_set_val().

3.7. Calling a Socket Function from an AST
State
Calls to various Sockets API functions return information in a static area. The OpenVMS environment
allows an asynchronous system trap (AST) function to interrupt a Sockets API function during its
execution. In addition, the ASTs of more privileged modes can interrupt ASTs of less privileged modes.
Therefore, be careful when calling a Sockets API function from an AST state while a similar Sockets

116

Chapter 3. Using the Sockets API

API function is being called from either a non-AST state or a less-privileged access mode. You can use
the SYS$SETAST system service to enable and disable the reception of AST requests.

The Sockets API functions that use a static area are:

● gethostbyaddr()

● gethostbyname()

● getnetbyaddr()

● getnetbyname()

● getservbyname()

● getservbyport()

● getprotobyname()

● getprotobynumber()

Caution

Because these Sockets API functions access files to retrieve information, you should not call these
functions from either the KERNEL or the EXEC mode when the ASTs are disabled.

3.8. Using 64-Bit Buffer Addresses (Alpha and
I64 Only)
The following functions accept both 32-bit and 64-bit addresses:

● send()

● recv()

● sendto()

● sendmsg()

● recvfrom()

● recvmsg()

To accept 64-bit addresses, the program must have the _INITIAL_POINTER_SIZE compiler option set
to 64.

The sendmsg() and recvmsg() functions accept a pointer to the msghdr structure, which can be
specified for either 32-bit or 64-bit addresses, as described in Section 3.2.8, "msghdr Structure".

3.9. Standard I/O Functions
You cannot use standard I/O functions with the Sockets API. Specifically, the fdopen() function does
not support sockets.

117

Chapter 3. Using the Sockets API

3.10. Guidelines for Compiling and Linking
IPv6 Applications
To compile an IPv6 application that includes a file specification preceded by "path/", you need to set
up the environment as described in this section.

For example, if the application includes the following:

#include <path/file.h>

Set up the environment using the following commands:

$ DEFINE DECC$SYSTEM_INCLUDE TCPIP$EXAMPLES:
$ DEFINE ARPA TCPIP$EXAMPLES:
$ DEFINE NET TCPIP$EXAMPLES:
$ DEFINE NETINET TCPIP$EXAMPLES:
$ DEFINE SYS TCPIP$EXAMPLES:

If you are using any of the advanced APIs, you should:

● Add /INCLUDE_DIRECTORY=TCPIP$EXAMPLES: to the COMPILE command line. This
allows the compiler to use the updated header files that exist in the TCPIP$EXAMPLES directory.
Otherwise, the compiler will use the header files from the OpenVMS C Run-Time Library.

● Add TCPIP$LIBRARY:TCPIP$LIB/LIBRARY to the LINK command line. This allows the linker
to resolve references to functions from TCPIP$LIB.OLB provided by TCP/IP Services.

See Section E.6, "Sample Client/Server Programs" for examples of the COMPILE and LINK command
lines.

3.11. Compatibility with the OpenVMS VSI C
Run-Time Library
To maintain compatibility with the VSI VSI C Run-Time Library for OpenVMS Version 4.0, use the
predefined macro _DECC_V4_SOURCE, as shown in the format of the socket functions listed in
Chapter 4, "Sockets API Reference". For more information about using macros, refer to the VSI C Run-
Time Library Reference Manual for OpenVMS Systems [https://docs.vmssoftware.com/vsi-c-run-time-
library-reference-manual-for-openvms-systems/].

3.12. Error Checking: errno Values
Most Sockets API functions return a value that indicates whether the function was successful or
unsuccessful. A return value of zero (0) indicates success, and a value of –1 indicates the function was
unsuccessful.

If the function is not successful, it stores an additional value in the external variable errno. The value
stored in errno is valid only when the function is not successful. The error codes are defined in the
ERRNO.H header file.

All return codes and error values are of type integer unless otherwise noted.

The errno values can be translated to a message similar to those found on UNIX systems by using
the perror() function. The perror() function writes a message on the standard error stream that
describes the current setting of the external variable errno. The error message includes a character

118

https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-run-time-library-reference-manual-for-openvms-systems/

Chapter 3. Using the Sockets API

string containing the name of the function that caused the error followed by a colon (:), a blank space,
the system message string, and a newline character.

3.12.1. errno values
Table 3.11, "errno Values" lists the possible errno values.

Table 3.11. errno Values

Error Description

EADDRINUSE Address already in use.

Each address can be used only once.
EADDRNOTAVAIL Cannot assign requested address.

Normally, these values result from an attempt
to create a socket with an address not on this
machine.

EAFNOSUPPORT Address family not supported by protocol family.

An address incompatible with the requested
protocol was used.

EALREADY Operation already in progress.

An operation was attempted on a nonblocking
object that already had an operation in progress.

ECONNABORTED Software caused connection abort.

Indicates that the software caused a connection
abort because there is no space on the socket's
queue and the socket cannot receive further
connections.

A connection abort occurred internal to your host
machine.

ECONNREFUSED Connection refused.

No connection could be made because the target
machine actively refused it. This usually results
from trying to connect to a service that is inactive
on a remote host.

ECONNRESET Connection reset by peer.

A connection was forcibly closed by a peer.
This usually results from the peer executing a
shutdown() call.

EDESTADDRREQ Destination address required.

A required address was omitted from an operation
on a socket.

EHOSTDOWN Host is down.

119

Chapter 3. Using the Sockets API

Error Description
A socket operation failed because the destination
host was down.

EHOSTUNREACH No route to host.

A socket operation to an unreachable host was
attempted.

EINPROGRESS Operation now in progress.

An operation that takes a long time to complete,
such as connect(), was attempted on a
nonblocking object.

EISCONN Socket is already connected.

A connect() request was made on a socket
that was already connected, or a sendto()
or sendmsg() request on a connected socket
specified a destination other than the connected
party.

A path name lookup involved more than eight
symbolic links.

EMSGSIZE Message too long.

A message sent on a socket was larger than the
internal message buffer.

ENETDOWN Network is down.

A socket operation encountered a dead network.
ENETRESET Network dropped connection on reset.

The host you were connected to failed and
rebooted.

ENETUNREACH Network is unreachable.

A socket operation to an unreachable network was
attempted.

ENOBUFS No buffer space available.

An operation on a socket or pipe was not
performed because the system lacked sufficient
buffer space.

ENOPROTOOPT Protocol not available.

An invalid option was specified in a
getsockopt() or setsockopt() call.

ENOTSOCK Socket operation on a nonsocket.
ENTOTCONN Socket is not connected.

120

Chapter 3. Using the Sockets API

Error Description
Request to send or receive data was not allowed
because the socket is not connected.

EOPNOTSUPP Operation not supported.

For example, trying to accept a connection on a
datagram socket.

EPFNOSUPPORT Protocol family not supported.

The protocol family was not configured into the
system or no implementation for it exists.

EPROTONOSUPPORT Protocol not supported.

The protocol was not configured into the system or
no implementation for it exists.

EPROTOTYPE Protocol wrong type for socket.

A protocol was specified that does not support
the semantics of the socket type requested. For
example you cannot use the ARPA Internet UDP
protocol with type SOCK_STREAM.

ESHUTDOWN Cannot send after socket shutdown.

A request to send data was not allowed because the
socket had already been shut down with a previous
shutdown() call.

ESOCKTNOSUPPORT Socket type not supported.

Support for the socket type was not configured into
the system or no implementation for it exists.

ETIMEDOUT Connection timed out.

A connect() request failed because the
connected party did not respond properly after a
period of time. (The timeout period is dependent
on the communication protocol.)

EVMSERR OpenVMS error code is nontranslatable.

3.12.2. Relationship Between errno and h_errno
A function failure sets either h_errno or errno, depending on which is appropriate for the failing
condition.

The following example shows how to handle errors from the gethostbyname() function.

#include <errno.h>
#include <stdio.h>
#include <netdb.h>

main()
{
 static char hostname[256];

121

Chapter 3. Using the Sockets API

 struct hostent *hostentptr;

 errno = 0;
 h_errno = 0;
 if ((hostentptr = gethostbyname("hndy")) == NULL) {
 printf("unknown host name errno is: %d h_errno is: %d\n",
errno, h_errn
 perror("p_gethostbyname");
 herror("h_gethostbyname");
 }

 errno = 0;
 h_errno = 0;
 if ((hostentptr = gethostbyname(0)) == NULL) {
 printf("illegal host name errno is: %d h_errno is: %d\n",
errno, h_errn
 perror("p_gethostbyname");
 herror("h_gethostbyname");
 }
}

This example handles two types of errors from the gethostbyname() function.

The host name parameter hndy does not represent a known host. In this case,
gethostbyname() sets h_errno to HOST_NOT_FOUND, but does not set errno.

The call to perror in this example would output:

p_gethostbyname: Error 0

The call to herror in this example would print a message describing the failure:

h_gethostbyname: Unknown

The host name parameter is 0 (zero), an invalid argument. In this case, gethostbyname() sets
errno to EINVAL, but does not set h_errno.

A call to perror would print a message describing the failure:

p_gethostbyname: Invalid

A call to herror would print:

h_gethostbyname: Error 0

122

Chapter 4. Sockets API Reference
This chapter describes the Sockets API functions.

4.1. Summary of Socket Functions
This chapter describes the Sockets API functions that are listed in Table 4.1, "Sockets API Functions".

Table 4.1. Sockets API Functions

Function Description

accept() Accepts a connection on a passive socket.
bind() Binds a name to a socket.
close() Closes a connection and deletes a socket descriptor.
connect() Initiates a connection on a socket.
decc$get_sdc() Returns the socket device's OpenVMS I/O channel associated with a

socket descriptor (for use with the VSI VSI C Run-Time Library).
decc$socket_fd() Returns the socket descriptor associated with a Socket Device Channel

(SDC).
endhostent() Closes the hosts database file.
endnetent() Closes the network database file.
endprotent() Resets the index for the protocols table.
endservent() Closes the network services database file.
freeaddrinfo() Returns addrinfo structures and dynamic storage to the system.
freehostent() Deprecated function. Replace with freeaddrinfo().
gai_strerror() Describes an error value for the getaddrinfo() and

getnameinfo() functions.
getaddrinfo() Protocol-independent function for mapping names to addresses.
gethostaddr() Returns the standard host address for the processor.
gethostbyaddr() Searches the hosts database for a host record with a given IPv4 address.
gethostbyname() Searches the hosts database for a host record with a given name or alias.
gethostbyname_r() The reentrant version of gethostbyname().
gethostent() Retrieves an entry from the hosts database file.
gethostname() Returns the fully qualified name of the local host.
getipnodebyaddr() Deprecated function. Replace with getaddrinfo().
getipnodebyname() Deprecated function. Replace with getnameinfo().
getnameinfo() Protocol-independent function for mapping addresses to names.
getnetbyaddr() Searches the network database for a network record with a given

address.
getnetbyname() Searches the network database for a network record with a given name

or alias.
getnetent() Gets a network file entry from the networks database file.

123

Chapter 4. Sockets API Reference

Function Description

getservent() Retrieves an entry from the services database file.
getpeername() Returns the name of the connected peer.
getprotobyname() Searches the protocols database until a matching protocol name is found

or until end of file is encountered.
getprotobynumber() Searches the protocols database until a matching protocol number is

found or until end of file is encountered.
getprotoent() Gets a protocol database entry from the network services database.
getservbyname() Gets information on the named service from the network services

database.
getservbyport() Gets information on the named port from the network services database.
getsockname() Returns the name associated with a socket.
getsockopt() Returns the options set on a socket.
herror() Writes a message to standard error explaining h_error.
hostalias() Searches for host aliases associated with a name.
hsterror() Returns an error message string.
htonl() Converts longwords from host byte order to network byte order.
htons() Converts short integers from host byte order to network byte order.
if_freenameindex() Frees dynamic memory allocated by if_nameindex() to the array

of interface names and indexes.
if_indextoname() Maps an interface index to its corresponding name.
if_nameindex() Returns an array of all interface names and indexes.
if_nametoindex() Maps an interface name to its corresponding index.
inet6_opt_append() Returns the length of an IPv6 extension header with a new option and

appends the option.
inet6_opt_find() Finds a specific option in an extension header.
inet6_opt_finish() Returns the total length of an IPv6 extension header, including padding,

and initializes the option.
inet6_opt_get_val() Extracts data items from the data portion of an IPv6 option.
inet6_opt_init() Returns the length of an IPv6 extension header with no options and

initializes the header.
inet6_opt_next() Parses received option extension headers.
inet6_opt_set_val() Adds one component of the option content to the options header.
inet6_rth_add() Adds an IPv6 address to the routing header under construction.
inet6_rth_getaddr() Retrieves an address for an index from an IPv6 routing header.
inet6_rth_init() Initializes an IPv6 routing header.
inet6_rth_reverse() Reverses the order of addresses in an IPv6 routing header.
inet6_rth_segments() Returns the number of segments (addresses) in an IPv6 routing header.
inet6_rth_space() Returns the number of bytes required for an IPv6 routing header.
inet_addr() Deprecated function. Replace with inet_aton().

124

Chapter 4. Sockets API Reference

Function Description

inet_aton() Converts a string to an IP address stored in a structure. Replaces the
inet_addr() function.

inet_lnaof() Returns the local network address portion of an IP address.
inet_makeaddr() Returns an IP address, given a network address and a local address on

that network.
inet_netof() Returns the IP network address portion of an IP address.
inet_network() Converts a null-terminated text string representing an IP address into a

network address in local host format.
inet_ntoa() Converts an IP address into an ASCII (null-terminated) string.
inet_ntop() Converts a numeric address into a text string suitable for presentation.
inet_pton() Converts an address in its standard text presentation form into its

numeric binary form, in network byte order.
ioctl() Controls devices. Used for setting sockets for nonblocking I/O.
listen() Converts an unconnected socket into a passive (listen) socket and

indicates that the TCP/IP kernel should accept incoming requests
directed to the socket.

ntohl() Converts longwords from network byte order into host byte order.
ntohs() Converts short integers from network byte order into host byte order.
poll() Monitors conditions on multiple file descriptors.
read() Reads bytes from a file or socket and places them into a user-defined

buffer.
recv() Receives bytes from a connected socket and places them into a user-

defined buffer.
recvfrom() Receives bytes for a socket from any source.
recvmsg() Receives bytes on a socket and places them into scattered buffers.
select() Allows the polling or checking of a group of sockets for I/O activity.
send() Sends bytes through a socket to a connected peer.
sendmsg() Sends gathered bytes through a socket to any other socket.
sendto() Sends bytes through a socket to any other socket.
sethostent() Opens the hosts database file.
setnetent() Opens the networks database file.
setprotent() Sets the state of the protocols table.
setservent() Opens the services database file.
setsockopt() Sets options on a socket.
shutdown() Shuts down all or part of a bidirectional connection on a socket.
socket() Creates an endpoint for communication by returning a socket descriptor.
socketpair() Creates a pair of connected sockets.
write() Writes bytes from a user-defined buffer to a file or socket.
vaxc$get_sdc() Not supported. Replace with decc$get_sdc().

125

Chapter 4. Sockets API Reference

4.2. Socket API Functions
This section describes functions that comprise the Sockets API and that are supported by TCP/IP
Services.

accept()
accept() — Accepts a connection on a passive socket. The $QIO equivalent is the IO$_ACCESS system
service with the IO$M_ACCEPT modifier.

Format
#include <types.h>
#include <socket.h>
int accept (int s, struct sockaddr *addr, int *addrlen);
(_DECC_V4_SOURCE)
int accept (int s, struct sockaddr *addr, size_t *addrlen);
(not_DECC_V4_SOURCE)

Arguments
s

A socket descriptor returned by socket(), subsequently bound to an address with bind(),
which is listening for connections after a listen().

addr

A result argument filled in with the address of the connecting entity, as known to the TCP/IP kernel.
The exact format of the structure to which the address parameter points is determined by the address
family. Specify either the IPv4 address family (AF_INET) or the IPv6 address family (AF_INET6).

addrlen

A value/result argument. It should initially contain the size of the structure pointed to by addr. On
return it will contain the actual length, in bytes, of the sockaddr structure that has been filled in
by the TCP/IP kernel. See Section 3.2.12, "sockaddr Structure" for a description of the sockaddr
structure.

Description
This function completes the first connection on the queue of pending connections, creates a new
socket with the same properties as s, and allocates and returns a new descriptor for the socket. If no
pending connections are present on the queue and the socket is not marked as nonblocking, accept()
blocks the caller until a connection request is present. If the socket is marked nonblocking by using
a setsockopt() call and no pending connections are present on the queue, accept() returns
an error. You cannot use the accepted socket to accept subsequent connections. The original socket s
remains open (listening) for other connection requests. This call is used with connection-based socket
types (SOCK_STREAM).

You can select a socket for the purposes of performing an accept by selecting it for a read.

Related Functions
See also bind(), connect(), listen(), select(), and socket().

126

Chapter 4. Sockets API Reference

Return Values
x

A positive integer that is a descriptor for the accepted socket.

-1

Error; errno is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.

ECONNABORTED

A connection has been aborted.

EFAULT

The addr argument is not in a writable part of the user address space.

EINTR

The accept() function was interrupted by a signal before a valid connection arrived.

EINVAL

The socket is not accepting connections.

EMFILE

There are too many open file descriptors.

ENFILE

The maximum number of file descriptors in the system is already open.

ENETDOWN

TCP/IP Services was not started.

ENOBUFS

The system has insufficient resources to complete the call.

ENOMEM

The system was unable to allocate kernel memory.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The reference socket is not of type SOCK_STREAM.

127

Chapter 4. Sockets API Reference

EPROTO

A protocol error occurred.

EWOULDBLOCK

The socket is marked nonblocking, and no connections are present to be accepted.

bind()
bind() — Binds a name to a socket. The $QIO equivalent is the IO$_SETMODE system service with the
p3 argument.

Format
#include <types.h>
#include <socket.h>
int bind(int s, struct sockaddr *name, int namelen);
(_DECC_V4_SOURCE)
int bind(int s, const struct sockaddr *name, size_t namelen);
(not_DECC_V4_SOURCE)

Arguments
s

A socket descriptor created with the socket() function.

name

Address of a structure used to assign a name to the socket in the format specific to the family
(AF_INET or AF_INET6) socket address. See Section 3.2.12, "sockaddr Structure" for a description
of the sockaddr structure.

namelen

The size, in bytes, of the structure pointed to by name.

Description
This function assigns a port number and IP address to an unnamed socket. When a socket is created
with the socket() function, it exists in a name space (address family) but has no name assigned. The
bind() function requests that a name be assigned to the socket.

Related Functions
See also connect(), getsockname(), listen(), and socket().

Return Values
0

Successful completion.

128

Chapter 4. Sockets API Reference

-1

Error; errno is set to indicate the error.

Errors
EACCESS

The requested address is protected, and the current user has inadequate permission to access it.

EADDRINUSE

The specified internet address and ports are already in use.

EADDRNOTAVAIL

The specified address is not available from the local machine.

EAFNOSUPPORT

The specified address is invalid for the address family of the specified socket.

EBADF

The socket descriptor is invalid.

EDESTADDRREQ

The address argument is a null pointer.

EFAULT

The name argument is not a valid part of the user address space.

EINVAL

The socket is already bound to an address and the protocol does not support binding to a new
address, the socket has been shut down, or the length or the namelen argument is invalid for the
address family.

EISCONN

The socket is already connected.

EISDIR

The address argument is a null pointer.

ENOBUFS

The system has insufficient resources to complete the call.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The socket type of the specified socket does not support binding to an address.

129

Chapter 4. Sockets API Reference

close()
close() — Closes a connection and deletes a socket descriptor. The $QIO equivalent is the $DASSGN
system service.

Format
#include <unixio.h>
int close (s);

Argument
s

A socket descriptor.

Description
This function deletes a descriptor from the per-process object reference table. Associated TCP
connections close first.

If a call to connect() fails for a socket in connection mode, applications should use close() to
deallocate the socket and descriptor.

Related Functions
See also accept(), socket(), and write().

Return Values
0

Successful completion.

-1

Error; errno is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.

EINTR

The close() function was interrupted by a signal that was caught.

connect()
connect() — Initiates a connection on a socket. The $QIO equivalent is the IO$_ACCESS system
service.

130

Chapter 4. Sockets API Reference

Format
#include <types.h>
#include <socket.h>
int connect (int s, struct sockaddr *name, int namelen); (_DECC_V4_SOURCE)
int connect (int s, const struct sockaddr *name, size_t namelen);
(not_DECC_V4_SOURCE)

Arguments
s

A socket descriptor created with socket().

name

The address of a structure that specifies the name of the remote socket in the format specific to the
address family (AF_INET or AF_INET6).

namelen

The size, in bytes, of the structure pointed to by name.

Description
This function initiates a connection on a socket.

If s is a socket descriptor of type SOCK_DGRAM, then this call permanently specifies the peer where the
data is sent. If s is of type SOCK_STREAM, then this call attempts to make a connection to the specified
socket.

If a call to connect() fails for a connection-mode socket, applications should use close() to
deallocate the socket and descriptor. If attempting to reinitiate the connection, applications should create
a new socket.

Related Functions
See also accept(), select(), socket(), getsockname(), and shutdown().

Return Values
0

Successful completion.

-1

Error; errno is set to indicate the error.

Errors
EADDRINUSE

Configuration problem. There are insufficient ports available for the attempted connection. The
inet subsystem attribute ipport_userreserved should be increased.

131

Chapter 4. Sockets API Reference

EADDRNOTAVAIL

The specified address is not available from the local machine.

EAFNOSUPPORT

The addresses in the specified address family cannot be used with this socket.

EALREADY

A connection request is already in progress for the specified socket.

EBADF

The socket descriptor is invalid.

ECONNREFUSED

The attempt to connect was rejected.

EFAULT

The name argument is not a valid part of the user address space.

EHOSTUNREACH

The specified host is not reachable.

EINPROGRESS

O_NONBLOCK is set for the file descriptor for the socket, and the connection cannot be
immediately established; the connection will be established asynchronously.

EINTR

The connect() function was interrupted by a signal while waiting for the connection to be
established. Once established, the connection may continue asynchronously.

EINVAL

The value of the namelen argument is invalid for the specified address family, or the sa_family
member in the socket address structure is invalid for the protocol.

EISCONN

The socket is already connected.

ELOOP

Too many symbolic links were encountered in translating the file specification in the address.

ENETDOWN

The local network connection is not operational.

ENETUNREACH

No route to the network or host is present.

132

Chapter 4. Sockets API Reference

ENOBUFS

The system has insufficient resources to complete the call.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The socket is listening and cannot be connected.

EPROTOTYPE

The specified address has a different type than the socket bound to the specified peer address.

ETIMEDOUT

The connection request timed out without establishing a connection.

EWOULDBLOCK

The socket is nonblocking, and the connection cannot be completed immediately. It is possible to use
the select() function to select the socket for writing.

decc$get_sdc()
decc$get_sdc() — Returns the socket device's OpenVMS I/O channel (SDC) associated with a socket
descriptor.

Format
#include <socket.h>
short int decc$get_sdc (int s);

Argument

s

A socket descriptor.

Description

This function returns the SDC associated with a socket. Normally, socket descriptors are used either
as file descriptors or with one of the functions that takes an explicit socket descriptor as its argument.
Sockets are implemented using TCP/IP device sockets. This function returns the SDC used by a given
socket descriptor so you can directly access the TCP/IP facilities by means of $QIO system services.

Return Values

0

Indicates that s is not an open socket descriptor.

133

Chapter 4. Sockets API Reference

x

The SDC number.

decc$socket_fd
decc$socket_fd — Returns the socket descriptor associated with a Socket Device Channel (SDC) for
direct use with the VSI VSI C Run-Time Library.

Format
#include <socket.h>
int decc$socket_fd (int channel);

Argument
channel

A valid SDC.

Description
This function associates a valid socket channel with an VSI VSI C Run-Time Library file descriptor, and
returns the file descriptor. The file descriptor can then be used with any VSI VSI C Run-Time Library
function that takes a file descriptor or socket descriptor as an input parameter.

Return Values
x

The socket descriptor.

-1

Indicates an error; the socket descriptor cannot be allocated.

endhostent()
endhostent() — Closes hosts database file.

Format
#include <netdb.h>
void endhostent (void);

Description
This function closes the hosts database file (TCPIP$ETC:IPNODES.DAT), previously opened with a
gethostbyaddr(), gethostent(), or gethostbyname() function call.

If the most recent sethostent() function call is executed with a nonzero stay_open parameter, the
endhostent() function does not close the hosts database file. You cannot close the hosts database

134

Chapter 4. Sockets API Reference

file until you make a call to exit(). A second call to sethostent() is issued with a stay_open
parameter equal to 0 (zero). This ensures that a subsequent endhostent() call succeeds.

Related Functions
See also gethostbyaddr(), gethostent(), and gethostbyname().

endnetent()
endnetent() — Closes the networks database file.

Format
#include <netdb.h>
void endnetent (void);

Description
This function closes the networks database file (TCPIP$SYSTEM:NETWORKS.DAT), previously
opened with the getnetent(), setnetent(), getnetbyaddr(), or getnetbyname()
function.

Related Functions
See also getnetent(), getnetbyaddr(), getnetbyname(), and setnetent().

endprotoent()
endprotoent() — Resets the index for the protocols table.

Format
#include <netdb.h>
void endprotoent (void);

Description
This function resets the index for the protocols table previously accessed with a getprotoent(),
getprotobyname(), or getprotobynumber() function call.

Related Functions
See also getprotobyname(), getprotoent(), and getprotobynumber().

endservent()
endservent() — Closes the services database file.

Format
#include <netdb.h>

135

Chapter 4. Sockets API Reference

void endservent (void);

Description
This function closes the services database file (TCPIP$ETC:SERVICES.DAT), previously opened with
the getservent(), getservbyname(), or getservbyport() function.

Related Functions
See also getservent(), getservbyname(), and getservbyport().

freeaddrinfo()
freeaddrinfo() — Frees system resources used by an address information structure.

Format
#include <netdb.h>
void freeaddrinfo (struct addrinfo *ai);

Arguments
ai

Points to an addrinfo structure to be freed. The NETDB.H header file defines the addrinfo
structure.

Description
This function frees an addrinfo structure and any dynamic storage pointed to by the structure. The
process continues until the function encounters a NULL ai_next pointer.

gai_strerror()
gai_strerror() — Provides a descriptive text string that corresponds to an EAI_xxx error value.

Format
#include <netdb.h>
const char *gai_strerror (int ecode);

Arguments
ecode

The ecode argument is one of the EAI_xxx values defined for the getaddrinfo() and
getnameinfo() functions.

The values for ecode are:

EAI_AGAIN The name could not be resolved at this time. Future attempts may
succeed.

136

Chapter 4. Sockets API Reference

EAI_BADFLAGS The flags parameter had an invalid value.
EAI_FAIL A nonrecoverable error occurred when attempting to resolve the name.
EAI_FAMILY The address family was not recognized.
EAI_MEMORY There was a memory allocation failure when trying to allocate storage for

the return value.
EAI_NONAME The name does not resolve for the supplied parameters. Neither

nodename nor servname were supplied. At least one of these must be
supplied.

EAI_SERVICE The service passed was not recognized for the specified socket type.
EAI_SOCKTYPE The intended socket type was not recognized.
EAI_SYSTEM A system error occurred; the error code can be found in errno.

Description
This function returns a descriptive text string that corresponds to an EAI_xxx error value. The return
value points to a string that describes the error. If the argument is not one of the EAI_xxx values, the
function returns a pointer to a string whose contents indicate an unknown error.

For a complete list of error codes, see Appendix D, "Error Codes".

Return Values
x

Text string

-1

Failure

getaddrinfo()
getaddrinfo() — Takes a service location (nodename) or a service name (servname), or both, and
returns a pointer to a linked list of one or more structures of type addrinfo.

Format
#include <socket.h>
#include <netdb.h>
int getaddrinfo (const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

Arguments
nodename

Points to a network node name, alias, or numeric host address (for example, an IPv4 dotted-decimal
address or an IPv6 hexadecimal address). An IPv6 nonglobal address with an intended scope zone
may also be specified. This is a null-terminated string or NULL. NULL means the service location
is local to the caller. The nodename and servname arguments must not both be NULL.

137

Chapter 4. Sockets API Reference

servname

Points to a network service name or port number. This is a null-terminated string or NULL;
NULL returns network-level addresses for the specified nodename. The nodename and servname
arguments must not both be NULL.

hints

Points to an addrinfo structure that contains information about the type of socket, address
family, or protocol the caller supports. The NETDB.H header file defines the addrinfo structure.
If hints is a null pointer, the behavior is the same as if addrinfo contained the value 0 for
the ai_flags, ai_socktype and ai_protocol members and AF_UNSPEC for the
ai_family member.

res

Points to a linked list of one or more addrinfo structures.

Description
This function takes a service location (nodename) or a service name (servname), or both, and returns a
pointer to a linked list of one or more structures of type addrinfo. Its members specify data obtained
from the local hosts database TCPIP$ETC:IPNODES.DAT file, the local TCPIP$HOSTS.DAT file, or
one of the files distributed by DNS/BIND.

The NETDB.H header file defines the addrinfo structure.

If the hints argument is non-NULL, all addrinfo structure members other than the following
members must be zero or a NULL pointer:

● ai_flags

Controls the processing behavior of getaddrinfo(). See Table 4.2, "ai_flags Member Values"
for a complete description of the flags.

● ai_family

Specifies to return addresses for use with a specific protocol family.

• If you specify a value of AF_UNSPEC, getaddrinfo() returns addresses for any protocol
family that can be used with nodename or servname.

• If the value is not AF_UNSPEC and ai_protocol is not zero, getaddrinfo() returns
addresses for use only with the specified protocol family and protocol.

• If the application handles only IPv4, set this member of the hints structure to PF_INET.

● ai_socktype

Specifies a socket type for the given service. If you specify a value of 0, you will accept any socket
type. This resolves the service name for all socket types and returns all successful results.

● ai_protocol

Specifies a network protocol. If you specify a value of 0, you will accept any protocol. If the
application handles only TCP, set this member to IPPROTO_TCP.

Table 4.2, "ai_flags Member Values" describes the values for ai_flags members.

138

Chapter 4. Sockets API Reference

Table 4.2. ai_flags Member Values

Flag Value Description

AI_V4MAPPED If ai_family is AF_INET, the flag is ignored.

If ai_family is AF_INET6, getaddrinfo() searches for
AAAA records.

The lookup sequence is:

1. Local hosts database

2. TCPIP$ETC:IPNODES.DAT

3. BIND database

The lookup for a particular type of record, for example an AAAA
record, will be performed in each database before moving on to perform
a lookup for the next type of record.

● If AAAA records are found, returns IPv6 addresses; no search for
A records is performed.

● If no AAAA records are found, searches for A records.

● If A records found, returns IPv4-mapped IPv6 addresses.

● If no A records found, returns a NULL pointer.
AI_ALL|AI_V4MAPPED If ai_family is AF_INET, the flag is ignored.

If the ai_family is AF_INET6, getaddrinfo() searches for
AAAA records.

The lookup sequence is:

1. Local hosts database

2. TCPIP$ETC:IPNODES.DAT

3. BIND database

The lookup for a particular type of record, for example an AAAA
record, will be performed in each database before moving on to perform
a lookup for the next type of record.

● If AAAA records are found, IPv6 addresses will be included with
the returned addresses.

● If A records are found, returns IPv4-mapped IPv6 addresses and
also any IPv6 addresses that were found with the AAAA record
search.

● If no A records found, returns a NULL pointer.
AI_CANONNAME If the nodename argument is not NULL, the function searches for the

specified node's canonical name.

139

Chapter 4. Sockets API Reference

Flag Value Description
Upon successful completion, the ai_canonname member of the first
addrinfo structure in the linked list points to a null-terminated string
containing the canonical name of the specified node name.

If the nodename argument is an address literal, the ai_cannonname
member will refer to the nodename argument that has been converted
to its numeric binary form, in network byte order.

If the canonical name is not available, the ai_canonname member
refers to the nodename argument or to a string with the same contents.

The ai_flags field contents are undefined.
AI_NUMERICHOST A non-NULL node name string must be a numeric host address string.

Resolution of the service name is not performed.
AI_NUMERICSERV A non-NULL service name string must be a numeric port string.

Resolution of the service name is not performed.
AI_PASSIVE Returns a socket address structure that your application can use in a call

to bind().

If the nodename parameter is a NULL pointer, the IP address portion
of the socket address structure is set to INADDR_ANY (for an IPv4
address) or IN6ADDR_ANY_INIT (for an IPv6 address).

If not set, returns a socket address structure that your application can
use to call connect() (for a connection-oriented protocol) or either
connect(), sendto(), or sendmsg() (for a connectionless
protocol). If the nodename argument is a NULL pointer, the IP address
portion of the socket address structure is set to the loopback address.

AI_ADDRCONFIG Used in combination with other flags, modifies the search based on the
source address or addresses configured on the system.

You can use the flags in any combination to achieve finer control of the translation process. Many
applications use the combination of the AI_ADDRCONFIG and AI_V4MAPPED flags to control their
search.

● If the value of ai_family is AF_INET, and an IPv4 source address is configured on the system,
getaddrinfo() searches for A records only. If found, getaddrinfo() returns IPv4
addresses. If not, getaddrinfo() returns a NULL pointer.

● If the value of ai_family is AF_INET6 and an IPv6 source address is configured on the
system, getaddrinfo() searches for AAAA records. If found, getaddrinfo() returns
IPv6 addresses. If not, and if an IPv4 address is configured on the system, getaddrinfo()
searches for A records. If found, getaddrinfo() returns IPv4-mapped IPv6 addresses. If not,
getaddrinfo() returns a NULL pointer.

These flags are defined in the NETDB.H header file.

140

Chapter 4. Sockets API Reference

addrinfo Structure Processing
Upon successful return, getaddrinfo() returns a pointer to a linked list of one or more addrinfo
structures. The application can process each addrinfo structure in the list by following the ai_next
pointer until a NULL pointer is encountered. In each returned addrinfo structure, the ai_family,
ai_socktype, and ai_protocol members are the corresponding arguments for a call to the
socket() function. The ai_addr member points to a filled-in socket address structure whose length
is specified by the ai_addrlen member.

Return Values
0

Indicates success

-1

Indicates an error

Errors
EAI_AGAIN

The name could not be resolved at this time. Future attempts may succeed.

EAI_BADFLAGS

The flags parameter had an invalid value.

EAI_FAIL

A nonrecoverable error occurred when attempting to resolve the name.

EAI_FAMILY

The address family was not recognized.

EAI_MEMORY

There was a memory allocation failure when trying to allocate storage for the return value.

EAI_NONAME

The name does not resolve for the supplied parameters. Neither nodename nor servname were
supplied. At least one of these must be supplied.

EAI_SERVICE

The service passed was not recognized for the specified socket type.

EAI_SOCKTYPE

The intended socket type was not recognized.

EAI_SYSTEM

A system error occurred; the error code can be found in errno.

141

Chapter 4. Sockets API Reference

gethostaddr
gethostaddr — Returns the standard host address for the processor.

Format
#include <socket.h>
int gethostaddr (char *addr);

Argument
addr

A pointer to the buffer in which the standard host address for the current processor is returned.

Description
This function returns the standard host address for the current processor. The returned address is null-
terminated. The addr parameter must point to at least 16 bytes of free space.

Host addresses are limited to 16 characters.

Return Values
0

Indicates success.

-1

Indicates that an error has occurred and is further specified in the global errno.

gethostbyaddr()
gethostbyaddr() — Searches the hosts database that is referenced by the TCPIP$HOST logical name
for a host record with a given IPv4 address. If the host record is not found there, the function may
also invoke the BIND resolver to query the appropriate name server. The $QIO equivalent is the
IO$_ACPCONTROL function with the INETACP_FUNC$C_GETHOSTBYADDR subfunction code.

Format
#include <netdb.h>
struct hostent *gethostbyaddr (const void *addr, size_t len, int type);

Arguments
addr

A pointer to a series of bytes in network order specifying the address of the host sought.

len

The number of bytes in the address pointed to by the addr argument.

142

Chapter 4. Sockets API Reference

type

The type of address format being sought (AF_INET).

Description
This function finds the first host record with the specified address in the hosts database or using DNS/
BIND.

The gethostbyaddr() function uses a common static area for its return values. This means that
subsequent calls to this function overwrite previously returned host entries. You must make a copy of the
host entry if you want to save it.

Return Values
x

A pointer to an object having the hostent structure. See Section 3.2.3, "hostent Structure" for a
description of the hostent structure.

NULL

Indicates an error; errno is set to one of the following values.

Errors
ENETDOWN

TCP/IP Services was not started.

HOST_NOT_FOUND

Host is unknown.

NO_DATA

The server recognized the request and the name, but no address is available for the name. Another
type of name server request may be successful.

NO_RECOVERY

An unexpected server failure occurred. This is a nonrecoverable error.

TRY_AGAIN

A transient error occurred; for example, the server did not respond. A retry may be successful.

gethostbyname()
gethostbyname() — Searches the hosts database that is referenced by the TCPIP$HOST logical name
for a host record with the specified name or alias. If the host record is not found, this function may also
invoke the BIND resolver to query the appropriate name server for the information. The $QIO equivalent
is the IO$_ACPCONTROL function with the INETACP_FUNC$C_GETHOSTBYNAME subfunction
code.

143

Chapter 4. Sockets API Reference

Format
#include <netdb.h>
struct hostent *gethostbyname (char *name);

Argument
name

A pointer to a null-terminated character string containing the name or an alias of the host being
sought.

Description
This function finds the first host with the specified name or alias in the hosts database, or using DNS/
BIND.

The gethostbyname() function uses a common static area for its return values. This means that
subsequent calls to this function overwrite previously returned host entries. You must make a copy of the
host entry if you want to save it.

Note

Modules that include calls to gethostbyname or gethostbyname_r must be compiled with the
C switch /PREFIX=ALL.

Return Values
x

A pointer to an object having the hostent structure. See Section 3.2.3, "hostent Structure" for a
description of the hostent structure.

NULL

Indicates an error. errno is set to one of the following values.

Errors
ENETDOWN

TCP/IP Services was not started.

HOST_NOT_FOUND

Host is unknown.

NO_DATA

The server recognized the request and the name, but no address is available for the name. Another
type of name server request may be successful.

NO_RECOVERY

An unexpected server failure occurred. This is a nonrecoverable error.

144

Chapter 4. Sockets API Reference

TRY_AGAIN

A transient error occurred; for example, the server did not respond. A retry may be successful.

gethostbyname_r()
gethostbyname_r() — Searches the hosts database that is referenced by the TCPIP$HOST logical
name for a host record with the specified name or alias (reentrant). If the host record is not found, this
function may also invoke the BIND resolver to query the appropriate name server for the information.

Format
#include <netdb.h>
int gethostbyname_r(const char *name, struct hostent *ret, char *buffer,
size_t buflen, struct hostent **result, int *h_errnop);

Arguments
name

The name or alias of the host which entry you want to find.

ret

The storage area to hold the retrieved host entry.

buffer

A pointer to a temporary buffer that the function can use during the operation to store the data
associated with the host entry.

buflen

The length of the temporary buffer.

result

A pointer to a struct hostent where the function can store the host entry.

h_errnop

A pointer to a location where the function can store an error number if an error occurs.

Description
The gethostbyname_r() function is the reentrant version of gethostbyname(). The caller
supplies a hostent structure ret which will be filled in on success, and a temporary buffer buffer of
size buflen.

On success, result will point to the hostent structure. In case of an error or if no host is found, result
will be NULL. The function returns 0 on success and a nonzero error number on failure.

Note

Modules that include calls to gethostbyname or gethostbyname_r must be compiled with the
C switch /PREFIX=ALL.

145

Chapter 4. Sockets API Reference

Return Values
0

Successful completion.

nonzero

On error, the function returns an error number. The global variable h_errno is not modified, but
the address of a variable in which to store error numbers is passed in h_errnop.

Errors
ENETDOWN

TCP/IP Services was not started.

ERANGE

The buffer is too small. The call should be retried with a larger buffer.

HOST_NOT_FOUND

Host is unknown.

NO_DATA

The server recognized the request and the name, but no address is available for the name. Another
type of name server request may be successful.

NO_RECOVERY

An unexpected server failure occurred. This is a nonrecoverable error.

TRY_AGAIN

A transient error occurred; for example, the server did not respond. A retry may be successful.

gethostent()
gethostent() — Retrieves an entry from the hosts database file.

Format
#include <netdb.h>
struct hostent *gethostent (void);

Description
The gethostent() function reads the next entry of the hosts database file
(TCPIP$ETC:IPNODES.DAT).

See the NETDB.H header file for a description of the hostent structure.

The gethostent() function uses a common static area for its return values. Therefore, subsequent
calls to gethostent() overwrite any existing host entry. You must make a copy of the host entry, if
you wish to save it.

146

Chapter 4. Sockets API Reference

Return Values
x

A pointer to an object having the hostent structure. See Section 3.2.3, "hostent Structure" for a
description of the hostent structure.

NULL

Indicates an error; errno is set to one of the following values.

Errors
ENETDOWN

TCP/IP Services was not started.

HOST_NOT_FOUND

Host is unknown.

NO_DATA

The server recognized the request and the name, but no address is available for the name. Another
type of name server request may be successful.

NO_RECOVERY

An unexpected server failure occurred. This is a nonrecoverable error.

TRY_AGAIN

A transient error occurred; for example, the server did not respond. A retry may be successful.

gethostname()
gethostname() — Returns the fully-qualified name of the local host.

Format
#include <types.h>
#include <socket.h>
int gethostname (char *name, int namelen); (_DECC_V4_SOURCE)
int gethostname (char *name, size_t namelen); (not_DECC_V4_SOURCE)

Arguments
name

The address of a buffer where the name should be returned. The returned name is null terminated
unless sufficient space is not provided.

namelen

The size of the buffer pointed to by name.

147

Chapter 4. Sockets API Reference

Description
This function returns the translation of the logical names TCPIP$INET_HOST and
TCPIP$INET_DOMAIN when used with the TCP/IP Services software.

Return Values
0

Indicates successful completion.

-1

Indicates an error occurred. The value of errno indicates the error.

Errors
EFAULT

The buffer described by name and namelen is not a valid, writable part of the user address space.

getnameinfo()
getnameinfo() — Maps addresses to names in a protocol-independent way.

Format
#include <socket.h>
#include <netdb.h>
int getnameinfo (const struct sockaddr *sa, size_t salen, char *node,
size_t nodelen, char *service, size_t servicelen, int flags);

Arguments
sa

Points either to a sockaddr_in structure (for IPv4) or to a sockaddr_in6 structure (for
IPv6) that holds the IP address and port number.

salen

Specifies the length of either the sockaddr_in structure or the sockaddr_in6 structure.

node

Points to a buffer in which to receive the null-terminated network node name or alias corresponding
to the address contained in the sa. A NULL pointer instructs getnameinfo() to not return a
node name. The node argument and service argument must not both be zero.

nodelen

Specifies the length of the node buffer. A value of zero instructs getnameinfo() to not return a
node name.

148

Chapter 4. Sockets API Reference

service

Points to a buffer in which to receive the null-terminated network service name associated with the
port number contained in sa. A NULL pointer instructs getnameinfo() to not return a service
name. The node argument and service argument must not both be 0.

servicelen

Specifies the length of the service buffer. A value of zero instructs getnameinfo() to not return
a service name.

flags

Specifies changes to the default actions of getnameinfo(). By default, getnameinfo()
searches for the fully-qualified domain name of the node in the hosts database and returns it. See
Table 4.3, "getnameinfo() Flags" for a list of flags and their meanings.

Description
This function looks up an IP address and port number in a sockaddr structure specified by sa and
returns node name and service name text strings in the buffers pointed to by the node and service
arguments, respectively.

If the node name is not found, getnameinfo() returns the numeric form of the node address,
regardless of the value of the flags argument. If the service name is not found, getnameinfo()
returns the numeric form of the service address (port number) regardless of the value of the flags
argument.

The application must provide buffers large enough to hold the fully-qualified domain name and the
service name, including the terminating null characters.

Table 4.3, "getnameinfo() Flags" describes the flag bits and, if set, their meanings. The flags are
defined in the NETDB.H header file.

Table 4.3. getnameinfo() Flags

Flag Value Description

NI_DGRAM Specifies that the service is a datagram service (SOCK_DGRAM). The
default assumes a stream service (SOCK_STREAM). This is required for the
few ports (512-514) that have different services for UDP and TCP.

NI_NAMEREQD Returns an error if the host name cannot be located in the hosts database.
NI_NOFQDN Searches the hosts database and returns the node name portion of the fully-

qualified domain name for local hosts.
NI_NUMERICHOST1 Returns the numeric form of the host's address instead of its name.

Resolution of the host name is not performed.
NI_NUMERICSERV1 Returns the numeric form (port number) of the service address instead of its

name. The host name is not resolved.
1The two NI_NUMERIC* flags are required to support the -n flag that many commands provide.

Return Values
0

Indicates success.

149

Chapter 4. Sockets API Reference

x

Indicates an error occurred. The value of errno indicates the error.

Errors
EAI_AGAIN

The name could not be resolved at this time. Future attempts may succeed.

EAI_BADFLAGS

The flags argument had an invalid value.

EAI_FAIL

A nonrecoverable error occurred when attempting to resolve the name.

EAI_FAMILY

The address family was not recognized.

EAI_MEMORY

There was a memory allocation failure when trying to allocate storage for the return value.

EAI_NONAME

The name does not resolve for the supplied parameters. Neither the node name nor the service name
were supplied. At least one of these must be supplied.

EAI_SYSTEM

A system error occurred; the error code can be found in errno.

getnetbyaddr()
getnetbyaddr() — Searches the network database that is referenced by the TCPIP$NETWORK logical
name for a network record with the specified address. If the network record is not found, this function
may invoke the BIND resolver to search TCPIP$SYSTEM:NETWORKS.DAT. The $QIO equivalent is
the IO$_ACPCONTROL function with the INETACP_FUNC$C_GETNETBYADDR subfunction code.

Format
#include <netdb.h>
struct netent *getnetbyaddr (long net, int type) ;

Arguments
net

The network number, in host byte order, of the networks database entry required.

type

The type of network being sought (AF_INET or AF_INET6).

150

Chapter 4. Sockets API Reference

Description
This function finds the first network record in the networks database with the given address.

The getnetbyaddr() and getnetbyname() functions use a common static area for their return
values. Subsequent calls to any of these functions overwrite any previously returned network entry. You
must make a copy of the network entry if you want to save it.

Return Values
x

A pointer to an object having the netent structure. See Section 3.2.9, "netent Structure" for a
description of the netent structure.

NULL

Indicates end of file or an error.

Errors
EINVAL

The net argument is invalid.

ESRCH

The search failed.

getnetbyname()
getnetbyname() — Searches the networks database for a network record with a specified name
or alias. If the network record is not found, this function may invoke the BIND resolver to search
TCPIP$SYSTEM:NETWORKS.DAT. The $QIO equivalent is the IO$_ACPCONTROL function with
the INETACP_FUNC$C_GETNETBYNAME subfunction code.

Format
#include <netdb.h>
struct netent *getnetbyname (char *name);

Argument
name

A pointer to a null-terminated character string containing either the network name or an alias for the
network name.

Description
This function finds the first network record in the networks database with the given name or alias.

The getnetbyaddr() and getnetbyname() functions use a common static area for their return
values. Subsequent calls to any of these functions overwrite previously returned network entries. You
must make a copy of the network entry if you want to save it.

151

Chapter 4. Sockets API Reference

Return Values

NULL

Indicates end of file or an error.

x

A pointer to an object having the netent structure. See Section 3.2.9, "netent Structure" for a
description of the netent structure.

Errors

EFAULT

The buffer described by name is not a valid, writable part of the user address space.

EINVAL

The name argument is invalid.

ESRCH

The search failed.

getnetent()
getnetent() — Retrieves an entry from the networks database file.

Format
#include <netdb.h>
struct netent *getnetnet (void);

Description

This function opens and sequentially reads the networks database file
(TCPIP$SYSTEM:NETWORKS.DAT) to retrieve network information.

Returns a pointer to a netent structure that contains the equivalent fields for a network description line
in the networks database file. The netent structure is defined in the NETDB.H header file.

The networks database file remains open after a call by the getservent() function. Use the
endnetent() function to close the networks database file. Use the setnetent() function to open
the networks database file and reset the file marker to the beginning of the file.

The getnetent() function uses a common static area for its return values, so subsequent calls to this
function overwrite any existing network entry. To save the network entry, you must make a copy of it.

Related Functions

See also setnetent and endnetent.

152

Chapter 4. Sockets API Reference

Return Values
x

A pointer to a netent structure.

0

Indicates an error or end of file.

getpeername()
getpeername() — Returns the name of the connected peer. The $QIO equivalent is the
IO$_SENSEMODE function with the p4 argument.

Format
#include <types.h>
#include <socket.h>
int getpeername (int s, struct sockaddr*name, int *namelen);
 (_DECC_V4_SOURCE)
int getpeername (int s, struct sockaddr*name, size_t *namelen);
 (not_DECC_V4_SOURCE)

Arguments
s

A socket descriptor created using socket().

name

A pointer to a buffer where the peer name is to be returned.

namelen

An address of an integer that specifies the size of the name buffer. On return, it is modified to
reflect the actual length, in bytes, of the name returned.

Description
This function returns the name of the peer connected to the specified socket descriptor.

Related Functions
See also bind(), socket(), and getsockname().

Return Values
0

Successful completion.

-1

Error; errno is set to indicate the error.

153

Chapter 4. Sockets API Reference

Errors
EBADF

The descriptor is invalid.

EFAULT

The name argument is not a valid part of the user address space.

EINVAL

The socket has been shut down.

ENOBUFS

The system has insufficient resources to complete the call.

ENOTCONN

The socket is not connected.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The operation is not supported for the socket protocol.

getprotobyname()
getprotobyname() — Searches the protocols table until a matching protocol name is found or until the
end of the table is encountered.

Format
#include <netdb.h>
struct protoent *getprotobyname (char *name);

Argument
name

A pointer to a string containing the desired protocol name.

Description
This function returns a pointer to a protoent structure containing data from the protocols table. For
information about the protoent structure, refer to Section 3.2.10, "protoent Structure".

All information is contained in a static area, so it must be copied to be saved.

Related Functions
See also getprotoent() and getprotobynumber().

154

Chapter 4. Sockets API Reference

Return Values
NULL

Indicates the end of the table or an error.

x

A pointer to a protoent structure.

getprotobynumber()
getprotobynumber() — Searches the protocols table until a matching protocol number is found or until
the end of the table is encountered.

Format
#include <netdb.h>
struct protoent *getprotobynumber (int *proto);

Argument
proto

A pointer to a string containing the desired protocol number.

Description
This function returns a pointer to a protoent structure containing the data from the protocols table.
For information about the protoent structure, refer to Section 3.2.10, "protoent Structure".

All information is contained in a static area, so it must be copied to be saved.

Related Functions
See also getprotoent() and getprotobyname().

Return Values
NULL

Indicates end of table or an error.

x

A pointer to a protoent structure.

getprotoent()
getprotoent() — Reads the next entry from the protocols table.

Format
#include <netdb.h>
struct protoent *getprotoent();

155

Chapter 4. Sockets API Reference

Description
This function returns a pointer to a protoent structure containing the data from the protocols table.
For information about the protoent structure, refer to Section 3.2.10, "protoent Structure".

The getprotoent() function keeps an index to the table, allowing successive calls to be used to
search the entire table.

All information is contained in a static area, so it must be copied to be saved.

Related Functions
See also getprotobyname() and getprotobynumber().

Return Values
NULL

Indicates the end of the table or an error.

x

A pointer to a protoent structure.

getservbyname()
getservbyname() — Gets information on the specified service from the services database that is
referenced by the TCPIP$SERVICE logical name. If not found there, this function may invoke the BIND
resolver to search TCPIP$ETC:SERVICES.DAT.

Format
#include <netdb.h>
struct servent *getservbyname (char *name, char *proto);

Arguments
name

A pointer to a string containing the name of the service about which information is required.

proto

A pointer to a string containing the name of the protocol (TCP or UDP) for which to search.

Description
This function searches the services database until a matching service name is found or the end of file is
encountered. If a protocol name is also supplied, searches must also match the protocol.

This function returns a pointer to a servent structure containing the data from the network services
database. For information about the servent structure, refer to Section 3.2.11, "servent Structure".

All information is contained in a static area, so it must be copied to be saved.

156

Chapter 4. Sockets API Reference

Related Functions
See also getservbyport().

Return Values
NULL

Indicates end of file or an error.

x

A pointer to a servent structure.

getservbyport()
getservbyport() — Gets information on the specified port from the services database that is referenced
by the TCPIP$SERVICE logical name. If the specified port is not found, this function may invoke the
BIND resolver to search TCPIP$ETC:SERVICES.DAT.

Format
#include <netdb.h>
struct servent *getservbyport (int port, char *proto);

Arguments
port

The port number for which to search. This port number should be specified in network byte order.
You can use the htons() function to convert the port number to network byte order.

proto

A pointer to a string containing the name of the protocol (TCP or UDP) for which to search.

Description
This function searches the services database until a matching port is found, or until end of file is
encountered. If a protocol name is also supplied, searches must also match the protocol.

This function returns a pointer to a servent structure containing the broken-out fields of the requested
line in the network services database. For information about the servent structure, refer to Section
3.2.11, "servent Structure".

All information is contained in a static area, so it must be copied to be saved.

Related Functions
See also getservbyname().

Return Values
NULL

Indicates end of file or an error.

157

Chapter 4. Sockets API Reference

x

A pointer to a servent structure.

Errors
EPERM

Not owner. Indicates that the wrong port number was specified.

getservent()
getservent() — Retrieves an entry from the services database file.

Format
#include <netdb.h>
struct servent *getservent (void);

Description
This function reads the next line of the services database file (TCPIP$ETC:SERVICES.DAT).

An application program can use the getservent() function to retrieve information about a service
(such as the protocol or the ports it uses) from the services database.

The getservent() function returns a servent structure that contains information from the
services database file. See Section 3.2.11, "servent Structure" for a description of the servent
structure. The servent structure is defined in the NETDB.H header file.

The ASCII text services database file remains open after a call by the getservent() function. Use
the endservent() function to close the services database file. Use the setservent() function to
open the services database file and reset the file marker to the beginning of the file.

The getservent function uses a common static area for its return values, so subsequent calls to this
function overwrite any existing service entry. To save the services entry, you must make a copy of it.

Related Functions
See also setservent and endservent.

Return Values
x

A pointer to a servent structure.

NULL

Indicates an error or end of file.

getsockname()
getsockname() — Returns the name associated with a socket. The $QIO equivalent is the
IO$_SENSEMODE function with the p3 argument.

158

Chapter 4. Sockets API Reference

Format
#include <types.h>
#include <socket.h>
int getsockname (int s, struct sockaddr *name, int *namelen);
(_DECC_V4_SOURCE)
int getsockname (int s, struct sockaddr *name, size_t *namelen);
(not_DECC_V4_SOURCE)

Arguments
s

A socket descriptor created with the socket() function and bound to the socket name with the
bind() function.

name

A pointer to the buffer in which getsockname() should return the socket name.

namelen

A pointer to an integer containing the size of the buffer pointed to by name. On return, the integer
indicates the actual size, in bytes, of the name returned.

Description
This function returns the current name for the specified socket descriptor. The name is in a format
specific to the address family assigned to the socket (AF_INET, or AF_INET6 with BSD 4.4 when
_SOCKADDR_LEN is defined).

The bind() function, not the getsockname() function, makes the association of the name to the
socket.

Related Functions
See also bind() and socket().

Return Values
0

Successful completion.

-1

Error; errno is set to indicate the error.

Errors
EBADF

The descriptor is invalid.

EFAULT

The name argument is not a valid part of the user address space.

159

Chapter 4. Sockets API Reference

ENOBUFS

The system has insufficient resources to complete the call.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The operation is not supported for this socket's protocol.

getsockopt()
getsockopt() — Returns the options set on a socket. The $QIO equivalent is the IO$_SENSEMODE
function.

Format
#include <types.h>
#include <socket.h>
int getsockopt (int s, int level, int optname, char *optval,
int *optlen); (_DECC_V4_SOURCE)
int getsockopt (int s, int level, int optname, void *optval,
size_t *optlen); (not_DECC_V4_SOURCE)

Arguments
s

A socket descriptor created by the socket() function.

level

The protocol level for which the socket options are desired. It can have one of the following values:

SOL_SOCKET Get the options at the socket level.
p Any protocol number. Get the options for protocol level specified by p. The

IPPROTO values are defined in the IN.H header file (for IPv4), or the IN6.H
header file (for IPv6).

optname

Interpreted by the protocol specified in the level. Options at each protocol level are documented with
the protocol.

For descriptions of the supported socket level options, see the description of setsockopt() in
this chapter.

optval

Points to a buffer in which the value of the specified option should be placed by getsockopt().

optlen

Points to an integer containing the size of the buffer pointed to by optval. On return, the integer is
modified to indicate the actual size of the option value returned.

160

Chapter 4. Sockets API Reference

Description
This function gets information on socket options. See the appropriate protocol for information about
available options at each protocol level.

Return Values
0

Successful completion.

-1

Error; errno is set to indicate the error.

Errors
EACCES

The calling process does not have appropriate permissions.

EBADF

The socket descriptor is invalid.

EDOM

The send and receive timeout values are too large to fit in the timeout fields of the socket structure.

EFAULT

The address pointed to by the optval argument is not in a valid (writable) part of the process space,
or the optlen argument is not in a valid part of the process address space.

EINVAL

The optval or optlen argument is invalid; or the socket is shut down.

ENOBUFS

The system has insufficient resources to complete the call.

ENOTSOCK

The socket descriptor is invalid.

ENOPROTOOPT

The option is unknown or the protocol is unsupported.

EOPNOTSUPP

The operation is not supported by the socket protocol.

ENOPROTOOPT

The option is unknown.

161

Chapter 4. Sockets API Reference

ENOTSOCK

The socket descriptor is invalid.

herror()
herror() — Writes a message to standard error explaining h_error.

Format
#include <netdb.h>
void herror (const char *string);

Argument
string

A user-printable string.

Description
This function maps the error number in the external variable h_errno to a locale-dependent error
message.

hostalias()
hostalias() — Searches for host aliases associated with a name.

Format
#include <resolv.h>

char *hostalias (const char *name);

Argument
name

Points to the name of the host that you want to retrieve aliases from.

Description
This function searches for the alias associated with the name argument. The HOSTALIASES logical
name can be used to define the name of a file that lists the host aliases, in the form:

 host alias

Return Values
x

The host alias.

162

Chapter 4. Sockets API Reference

NULL

Indicates an error.

hstrerror()
hstrerror() — Returns an error message string.

Format
#include <string.h>
char *hstrerror (int errnum);

Arguments
errnum

An error number specifying a value of h_errno.

Description
This function maps the error number specified by the errnum argument to a location-dependent error
message string and returns a pointer to the string. The string pointed to by the return value cannot be
modified by the program, but could be overwritten by subsequent calls to this function.

Return Values
x

A pointer to the generated message string.

-1

On error, errno might be set, but no return value is reserved to indicate an error.

Errors
If the hstrerror() function fails, errno is set to EINVAL, indicating the value of the errnum
argument is an invalid error number.

htonl()
htonl() — Converts longwords from host byte order to network byte order.

Format
#include <in.h>
unsigned long int htonl (unsigned long int hostlong);

Argument
hostlong

A longword in host byte order (OpenVMS systems).

163

Chapter 4. Sockets API Reference

Description
This function converts 32-bit unsigned integers from host byte order to network byte order.

Data bytes transmitted over the network are expected to be in network byte order. Some hosts, like
OpenVMS, have an internal data representation format that is different from the network byte order; this
is called the host byte order. Network byte order places the byte with the most significant bits at lower
addresses, but OpenVMS host byte order places the most significant bits at the highest address.

This function can be used to convert IP addresses from host byte order to network byte order.

Note

The 64-bit return from OpenVMS Alpha and I64 systems has zero-extended bits in the high 32 bits of
R0.

Return Value
x

A longword in network byte order.

htons()
htons() — Converts short integers from host byte order to network byte order.

Format
#include <in.h>
unsigned short int htons (unsigned short int hostshort);

Argument
hostshort

A short integer in host byte order (OpenVMS systems). All short integers on OpenVMS systems are
in host byte order unless otherwise specified.

Description
This function converts 16-bit unsigned integers from host byte order to network byte order.

Data bytes transmitted over the network are expected to be in network byte order. Some hosts, like
OpenVMS, have an internal data representation format that is different from the network byte order; this
is called the host byte order. Network byte order places the byte with the most significant bits at lower
addresses, but OpenVMS host byte order places the most significant bits at the highest address.

This function is most often used with ports returned by the getservent() function. To convert port
numbers from OpenVMS host byte order to network byte order, use the htons() function.

Note

The 64-bit return from OpenVMS Alpha and I64 systems has zero-extended bits in the high 32 bits of
R0.

164

Chapter 4. Sockets API Reference

Return Value
x

A short integer in network byte order. Integers in network byte order cannot be used for arithmetic
computation on OpenVMS systems.

if_freenameindex()
if_freenameindex() — Frees dynamic memory allocated by if_nameindex() to the array of
interface names and indexes

Format
#include <if.h>
void if_freenameindex
(struct if_nameindex *ptr);

Arguments
ptr

Points to an array of structures returned by the if_nameindex() function.

Description
The if_freenameindex() function frees dynamic memory allocated to the array of interface
names and indexes that the if_nameindex() function returned.

if_indextoname()
if_indextoname() — Maps an interface index to its corresponding name.

Format
#include <if.h>
char *if_indextoname (unsigned int ifindex, char *ifname);

Arguments
ifindex

The interface index.

ifname

Points to a buffer that is IFNAMSIZ bytes in length. (IFNAMSIZ is defined in the IF.H header file.)
If an interface name is found, it is returned in the buffer.

Description
This function maps an interface index to its corresponding name.

165

Chapter 4. Sockets API Reference

Return Values
Interface name

If interface name is found, it is returned to the buffer.

NULL

If no interface name corresponds to the specified index, the function returns NULL and sets errno
to ENXIO.

Errors
ENXIO

No interface name corresponds to the specified index.

System error

A system error.

if_nameindex()
if_nameindex() — Returns an array of all interface names and indexes.

Format
#include <if.h>
struct if_nameindex *if_nameindex (void);

Description
This function dynamically allocates memory for an array of if_nameindex structures, one structure
for each interface. A structure with an if_index value of 0 and a NULL if_name value indicates
the end of the array.

The following if_nameindex structure must also be defined by including the IF.H header file prior
to the call to if_nameindex():

struct if_nameindex {
 unsigned int if_index;
 char *if_name;
};

To free the memory allocated by this function, use the if_freenameindex() function. If an error
occurs, the function returns a NULL pointer and sets errno to an appropriate value.

Return Values
NULL

Indicates an error; errno is set to an appropriate value.

if_nametoindex()
if_nametoindex() — Maps an interface name to its corresponding index.

166

Chapter 4. Sockets API Reference

Format
#include <if.h>
unsigned int if_nametoindex (const char *ifname);

Arguments
ifname

Points to a buffer that contains the interface name.

Description
This function maps an interface name to its corresponding interface index number.

Return Values
0 (zero)

Interface does not exist.

x

Upon successful conversion, the if_nametoindex() function returns an interface index
number.

inet6_opt_append()
inet6_opt_append() — Returns the length of an IPv6 extension header with a new option and appends
the option.

Format
#include <in6.h>
int inet6_opt_append (void *extbuf, size_t extlen, int offset,
uint8_t type, size_t len, uint_t align, void **databufp);

Arguments
extbuf

Points to a buffer that contains an extension header. This is either a valid pointer or a NULL pointer.

extlen

Specifies the length of the extension header to initialize. Valid values are 0 if extbuf equals 0, a value
returned by inet6_opt_finish(), or any number that is a multiple of 8.

offset

Specifies the length of the existing extension header. Obtain this value from a prior call to
inet6_opt_init() or inet6_opt_append().

type

Specifies the type of option. Specify a value from 2 to 255, inclusive, excluding 194.

167

Chapter 4. Sockets API Reference

len

Specifies the length of the option data, excluding the option type and option length fields. Specify a
value from 0 to 255, inclusive.

align

Specifies the alignment of the option. Specify one of the following values: 1, 2, 4, or 8.

databufp

Points to a buffer that contains the option data.

Description
This function, when called with extbuf as a NULL pointer and extlen as 0, returns the updated number
of bytes in an extension header.

If you specify extbuf as a valid pointer and valid extlen and align arguments, the function returns the
same information as in the previous case, but also inserts the pad option, initializes the type and len
fields, and returns a pointer to the location for the option content.

After you call inet6_opt_append(), you can then use the data buffer directly or call
inet6_opt_set_val() to specify the option contents.

Return Values
x

Upon successful completion, the inet6_opt_append() function returns the updated number of
bytes in an extension header.

-1

Failure

Errors
EBADF

The socket descriptor is invalid.

ECONNABORTED

A connection has been aborted.

EFAULT

The addr argument is not in a writable part of the user address space.

EINTR

The accept() function was interrupted by a signal before a valid connection arrived.

EINVAL

The socket is not accepting connections.

168

Chapter 4. Sockets API Reference

EMFILE

There are too many open file descriptors.

ENFILE

The maximum number of file descriptors in the system is already open.

ENETDOWN

TCP/IP Services was not started.

ENOBUFS

The system has insufficient resources to complete the call.

ENOMEM

The system was unable to allocate kernel memory.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The reference socket is not of type SOCK_STREAM.

EPROTO

A protocol error occurred.

EWOULDBLOCK

The socket is marked nonblocking, and no connections are present to be accepted.

inet6_opt_find()
inet6_opt_find() — Finds a specific option in an extension header.

Format
#include <in6.h>
int inet6_opt_find (void *extbuf, size_t extlen, int offset, uint8_t type,
size_t *lenp, void **databufp);

Arguments
extbuf

Points to a buffer that contains an extension header.

extlen

Specifies the length, in bytes, of the extension header.

169

Chapter 4. Sockets API Reference

offset

Specifies the location in the extension header of an option. Valid values are either 0 (zero) for
the first option or the length returned from a previous call to either inet6_opt_next() or
inet6_opt_find().

type

Specifies the type of option to find.

lenp

Points to the length of the option found.

databufp

Points to the option data.

Description
This function searches a received option extension header for an option specified by type. If it finds
the specified option, it returns the option length and a pointer to the option data. It also returns
an offset to the next option, which you can specify in the offset argument to subsequent calls to
inet6_opt_next() in order to search for additional occurrences of the same option type.

Return Values
x

Upon successful completion, the inet6_opt_find() function returns an offset from which you
can begin the next search in the data buffer.

-1

Failure

inet6_opt_finish()
inet6_opt_finish() — Returns the total length of an IPv6 extension header, including padding, and
initializes the option.

Format
#include <in6.h>
int inet6_opt_finish (void *extbuf, size_t extlen, int offset);

Arguments
extbuf

Points to a buffer that contains an extension header. This is either a valid pointer or a NULL pointer.

extlen

Specifies the length of the extension header to finish initializing. A valid value is any number greater
than or equal to 0.

170

Chapter 4. Sockets API Reference

offset

Specifies the length of the existing extension header. Obtain this value from a prior call to
inet6_opt_init() or inet6_opt_append().

Description
This function, when called with extbuf as a NULL pointer and extlen as 0, returns the total number of
bytes in an extension header, including final padding.

If you specify extbuf as a valid pointer and a valid extlen argument, the function returns the same
information as in the previous case, increments the buffer pointer, and verifies that the buffer is large
enough to hold the header.

Return Values
x

Upon successful completion, the inet6_opt_finish() function returns the total number of
bytes in an extension header, including padding.

-1

Failure

inet6_opt_get_val()
inet6_opt_get_val() — Extracts data items from the data portion of an IPv6 option.

Format
#include <in6.h>
int inet6_opt_get_val (void *databuf, size_t offset,
void *val, int vallen);

Arguments
databuf

Points to a buffer that contains an extension header. This is a pointer returned by a call to
inet6_opt_find() or inet6_opt_next().

offset

Specifies the location in the data portion of the option from which to extract the data. You can
access the first byte after the option type and length by specifying the offset of 0.

val

Points to a destination for the extracted data.

vallen

Specifies the length of the data, in bytes, to be extracted.

171

Chapter 4. Sockets API Reference

Description
This function copies data items from data buffer databuf beginning at offset to the location val. In
addition, it returns the offset for the next data field to assist you in extracting option content that has
multiple fields.

Make sure that each field is aligned on its natural boundaries.

Return Values
x

Upon successful completion, the inet6_opt_get_val() function returns the offset for the next
field in the data buffer.

-1

Failure

inet6_opt_init()
inet6_opt_init() — Returns the length of an IPv6 extension header with no options and initializes the
header.

Format
#include <in6.h>
int inet6_opt_init (void *extbuf, size_t extlen);

Arguments
extbuf

Points to a buffer that contains an extension header. This is either a valid pointer or a NULL pointer.

extlen

Specifies the length of the extension header to initialize. Valid values are 0 and any number that is a
multiple of 8.

Description
This function, when called with extbuf as a NULL pointer and extlen as 0, returns the number of bytes
in an extension header that has no options.

If you specify extbuf as a valid pointer and extlen as a number that is a multiple of 8, the function
returns the same information as in the previous case, initializes the extension header, and sets the length
field.

Return Values
x

Upon successful completion, the inet6_opt_init() function returns the number of bytes in an
extension header with no options.

172

Chapter 4. Sockets API Reference

-1

Failure

inet6_opt_next()
inet6_opt_next() — Parses received option extension headers.

Format
#include <in6.h>
int inet6_opt_next (void *extbuf, size_t extlen, int offset,
uint8_t *typep, size_t *lenp, void **databufp);

Arguments
extbuf

Points to a buffer that contains an extension header.

extlen

Specifies the length, in bytes, of the extension header.

offset

Specifies the location in the extension header of an option. Valid values are either 0 for the
first option or the length returned from a previous call to either inet6_opt_next() or
inet6_opt_find().

typep

Points to the type of the option found.

lenp

Points to the length of the option found.

databufp

Points to the option data.

Description
This function parses a received option extension header and returns the next option. In addition, it
returns an offset to the next option that you specify in the offset parameter to subsequent calls to
inet6_opt_next().

This function does not return any PAD1 or PADN options.

Return Values
x

Upon successful completion, the inet6_opt_next() function returns the offset for the next
option in the data buffer.

173

Chapter 4. Sockets API Reference

-1

Failure

inet6_opt_set_val()
inet6_opt_set_val() — Adds one component of the option content to the options header.

Format
#include <in6.h>
int inet6_opt_set_val (void *databuf, size_t offset,
void *val int vallen);

Arguments
databuf

Points to a buffer that contains an extension header. This is a pointer returned by a call to
inet6_opt_append().

offset

Specifies the location in the data portion of the option into which to insert the data. You can access
the first byte after the option type and length by specifying the offset of 0 (zero).

val

Points to the data to be inserted.

vallen

Specifies the length of the data, in bytes, to be inserted.

Description
This function copies data items at the location val into a data buffer databuf beginning at offset. In
addition, it returns the offset for the next data field to assist you in composing content that has multiple
fields.

Make sure that each field is aligned on its natural boundaries.

Return Values
x

Upon successful completion, the inet6_opt_set_val() function returns the offset for the next
field in the data buffer.

-1

Failure

inet6_rth_add()
inet6_rth_add() — Adds an IPv6 address to the routing header under construction.

174

Chapter 4. Sockets API Reference

Format
#include <in6.h>
int inet6_rth_add (void *bp, const struct in6_addr *addr);

Arguments
bp

Points to a buffer that is to contain an IPv6 routing header.

addr

Points to an IPv6 address to add to the routing header.

Description
This function adds an IPv6 address to the end of the routing header under construction. The address
pointed to by addr cannot be an IPv6 V4-mapped address or an IPv6 multicast address.

The function increments the ip6r0_segleft member in the ip6_rthdr0 structure. The
ip6_rthdr0 structure is defined in the IP6.H header file.

Only routing header type 0 is supported.

Return Values
x

Upon successful completion, the inet6_rth_add() function returns 0 (zero).

-1

Failure

inet6_rth_getaddr()
inet6_rth_getaddr() — Retrieves an address for an index from an IPv6 routing header.

Format
#include <in6.h>
struct in6_addr *inet6_rth_getaddr (const void *bp, int index);

Arguments
bp

Points to a buffer that contains an IPv6 routing header.

index

Specifies a value that identifies a position in a routing header for a specific address. Valid values
range from 0 to the return value from inet6_rth_segments() minus 1.

175

Chapter 4. Sockets API Reference

Description
This function uses a specified index value and retrieves a pointer to an address in a routing header
specified by bp. Call inet6_rth_segments() before calling this function in order to determine
the number of segments (addresses) in the routing header.

Return Values
x

Upon successful completion, the inet6_rth_getaddr() function returns a pointer to an
address.

NULL pointer

Failure

inet6_rth_init()
inet6_rth_init() — Initializes an IPv6 routing header buffer.

Format
#include <in6.h>
void *inet6_rth_init (void *bp, int bp_len, int type, int segments);

Arguments
bp

Points to a buffer that is to contain an IPv6 routing header.

bp_len

Specifies the length, in bytes, of the buffer.

type

Specifies the type of routing header. The valid value is IPV6_RTHDR_TYPE_0 for IPv6 routing
header type 0.

segments

Specifies the number of segments or addresses that are to be included in the routing header. The
valid value is from 0 to 127, inclusive.

Description
This function initializes a buffer and buffer data for an IPv6 routing header. The function sets the
ip6r0_segleft, ip6r0_nxt, and ip6r0_reserved members in the ip6_rthdr0 structure
to zero. In addition, it sets the ip6r0_type member to type and sets the ip6r0_len member based
on the segments argument. The ip6_rthdr0 structure is defined in the IP6.H header file.

The application must allocate the buffer. Use the inet6_rth_space() function to determine the
buffer size.

176

Chapter 4. Sockets API Reference

Use the returned pointer as the first argument to the inet6_rth_add() function.

Return Values
x

Upon successful completion, the inet6_rth_init() function returns a pointer to the buffer
that is to contain the routing header.

NULL pointer

Failure. If the type is not supported, the bp is a null, or the number of bp_len is invalid.

inet6_rth_reverse()
inet6_rth_reverse() — Reverses the order of addresses in an IPv6 routing header.

Format
#include <in6.h>
int inet6_rth_reverse (const void *in, void *out);

Arguments
in

Points to a buffer that contains an IPv6 routing header.

out

Points to a buffer that is to contain the routing header with the reversed addresses. This parameter
can point to the same buffer specified by the in parameter.

Description
This function reads an IPv6 routing header and writes a new routing header, reversing the order of
addresses in the new header. The in and out parameters can point to the same buffer.

The function sets the ip6r0_segleft member in the ip6_rthdr0 structure to the number of
segments (addresses) in the new header.

The ip6_rthdr0 structure is defined in the IP6.H header file.

Return Values
0 (zero)

Success

-1

Failure

inet6_rth_segments()
inet6_rth_segments() — Returns the number of segments (addresses) in an IPv6 routing header.

177

Chapter 4. Sockets API Reference

Format
#include <in6.h>
int inet6_rth_segments (const void *bp);

Arguments
bp

Points to a buffer that contains an IPv6 routing header.

Description
This function returns the number of segments (or addresses) in an IPv6 routing header.

Return Values
x

Upon successful completion, the inet6_rth_segments() function returns the number of
segments, 0 (zero) or greater than 0.

-1

Failure

inet6_rth_space()
inet6_rth_space() — Returns the number of bytes required for an IPv6 routing header.

Format
#include <in6.h>
size_t inet6_rth_space (int type, int segments);

Arguments
type

Specifies the type of routing header. The valid value is IPV6_RTHDR_TYPE_0 for IPv6 routing
header type 0.

segments

Specifies the number of segments or addresses that are to be included in the routing header. The
valid value is from 0 to 127, inclusive.

Description
This function determines the amount of space, in bytes, required for a routing header. Although the
function returns the amount of space required, it does not allocate buffer space. This enables the
application to allocate a larger buffer.

If the application uses ancillary data, it must pass the returned length to CMSG_LEN() to determine the
amount of memory required for the ancillary data object, including the cmsghdr structure.

178

Chapter 4. Sockets API Reference

Note

If an application wants to send other ancillary data objects, it must specify them to sendmsg() as a
single msg_control buffer.

Return Values
x

Upon successful completion, the inet6_rth_space() function returns the length, in bytes, of
the routing header and the specified number of segments.

0 (zero)

Failure, if the type is not supported or the number of segments is invalid for the type of routing
header.

inet_aton()
inet_aton() — Converts an IP address in the standard dotted-decimal format to its numeric binary form,
in network byte order. Replaces the inet_addr() function.

Format
#include <inet.h>
int inet_aton (const char *cp, struct in_addr *in);

Argument
cp

A pointer to a null-terminated character string containing an internet address in the standard internet
dotted-decimal format.

in

A pointer to a buffer that is to contain the numeric internet address in network byte order.

Description
This function returns a numeric internet address in network byte order that represents the internet
address supplied in standard dotted-decimal format as its argument.

Internet addresses specified with the dotted-decimal format take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the
4 bytes of an internet address. Note that when an internet address is viewed as a 32-bit integer quantity
on an OpenVMS system, the bytes appear in binary as d.c.b.a. That is, OpenVMS bytes are ordered
from least significant to most significant.

179

Chapter 4. Sockets API Reference

When only one part is given, the value is stored directly in the network address without any byte
rearrangement.

All numbers supplied as parts in a dotted-decimal address can be decimal, octal, or hexadecimal, as
specified in the C language. (That is, a leading 0x or 0X implies hexadecimal; a leading 0 implies octal;
otherwise, the number is interpreted as decimal.)

Note

The 64-bit return from OpenVMS Alpha and I64 systems has zero-extended bits in the high 32 bits of
R0.

Return Value
1

Indicates success.

0

Indicates failure.

inet_lnaof()
inet_lnaof() — Returns the local network address portion of an IP address.

Format
#include <in.h>
#include <inet.h>
int inet_lnaof (struct in_addr in);

Argument
in

An IP address.

Description
This function returns the local network address portion of a full IP address.

Note

The 64-bit return from OpenVMS Alpha and I64 systems has zero-extended bits in the high 32 bits of
R0.

Return Value
x

The local network address portion of an IP address, in host byte order.

180

Chapter 4. Sockets API Reference

inet_makeaddr()
inet_makeaddr() — Returns an IP address based on a particular local address and a network.

Format
#include <in.h>
#include <inet.h>
struct in_addr inet_makeaddr (int net, int lna);

Arguments
net

An IP network address in host byte order.

lna

A local network address on network net in host byte order.

Description
This function combines the net and lna arguments into a single IP address.

Note

The 64-bit return from OpenVMS Alpha and I64 systems has zero-extended bits in the high 32 bits of
R0.

Return Value
x

An IP address in network byte order.

inet_netof()
inet_netof() — Returns the internet network address portion of an IP address.

Format
#include <in.h>
#include <inet.h>
int inet_netof (struct in_addr in);

Argument
in

An IP address.

Description
This function returns the internet network address (NET) portion of a full IP address.

181

Chapter 4. Sockets API Reference

Note

The 64-bit return from OpenVMS Alpha and I64 systems has zero-extended bits in the high 32 bits of
R0.

Return Value
x

The internet network portion of an IP address, in host byte order.

inet_network()
inet_network() — Converts a null-terminated text string representing an IP address into a network
address in local host format.

Format
#include <in.h>
#include <inet.h>
int inet_network (const char *cp);

Argument
cp

A pointer to an ASCII (null-terminated) character string containing a network address in the dotted-
decimal format.

Description
This function returns an internet network address as a local host integer value when an ASCII string
representing the address in the internet standard dotted-decimal format is given as its argument.

Note

The 64-bit return from OpenVMS Alpha and I64 systems has zero-extended bits in the high 32 bits of
R0.

Return Values
-1

Indicates that cp does not point to a proper internet network address.

x

An internet network address, in local host order.

inet_ntoa()
inet_ntoa() — Converts an IP address into a text string representing the address in the standard internet
dotted-decimal format.

182

Chapter 4. Sockets API Reference

Format
#include <in.h>
#include <inet.h>
char *inet_ntoa (struct in_addr in);

Argument
in

An IP address in network byte order.

Description
This function converts an IP address into an ASCII (null-terminated) string that represents the address in
standard internet dotted-decimal format.

The string is returned in a static buffer that is overwritten by subsequent calls to inet_ntoa(). If you
want to save the text string, you should copy it.

Return Value
x

A pointer to a string containing the IP address in dotted-decimal format.

inet_ntop()
inet_ntop() — Converts a numeric address to a text string suitable for presentation.

Format
#include <inet.h>
const char *inet_ntop (int af, const void *src, char *dst, size_t size);

Arguments
af

Specifies the address family. Valid values are AF_INET for an IPv4 address and AF_INET6 for an
IPv6 address.

src

Points to a buffer that contains the numeric IP address.

dst

Points to a buffer that is to contain the text string.

size

Specifies the size of the buffer pointed to by the dst parameter. For IPv4 addresses, the
minimum buffer size is 16 bytes. For IPv6 addresses, the minimum buffer size is 46 bytes.
INET_ADDRSTRLEN constants are defined in the IN.H header file. INET6_ADDRSTRLEN
constants are defined in IN6.H.

183

Chapter 4. Sockets API Reference

Description
This function converts a numeric IP address value to a text string.

Return Values
Pointer to the buffer containing the text string

Success

Pointer to the buffer containing NULL

Failure

inet_pton()
inet_pton() — Converts an address in its standard text presentation form into its numeric binary form, in
network byte order.

Format
#include <inet.h>
int inet_pton (int af, const char *src, void *dst);

Arguments
af

Specifies the address family. Valid values are AF_INET for an IPv4 address and AF_INET6 for an
IPv6 address.

src

Points to the address text string to be converted.

dst

Points to a buffer that is to contain the numeric address.

Description
This function converts a text string to a numeric value in network byte order.

● If the af parameter is AF_INET, the function accepts a string in the standard IPv4 dotted-decimal
format:

 ddd.ddd.ddd.ddd

In this format, ddd is a one- to three-digit decimal number between 0 and 255.

● If the af parameter is AF_INET6, the function accepts a string in the following format:

x:x:x:x:x:x:x:x

In this format, x is the hexadecimal value of a 16-bit piece of the address.

184

Chapter 4. Sockets API Reference

IPv6 addresses can contain long strings of zero (0) bits. To make it easier to write these addresses,
you can use double-colon characters (::) one time in an address to represent 1 or more 16-bit groups
of zeros.

● For mixed IPv4 and IPv6 environments, the following format is also accepted:

x:x:x:x:x:x:ddd.ddd.ddd.ddd

In this format, x is the hexadecimal value of a 16-bit piece of the address, and ddd is a one- to three-
digit decimal value between 0 and 255 that represents the IPv4 address.

The calling application is responsible for ensuring that the buffer referred to by the dst parameter is large
enough to hold the numeric address. AF_INET addresses require 4 bytes and AF_INET6 addresses
require 16 bytes.

Return Values
1

Indicates success.

0

Indicates that the input string is neither a valid IPv4 dotted-decimal string nor a valid IPv6 address
string.

-1

Indicates a failure. errno is set to the following value.

Errors
EAFNOSUPPORT

The address family specified in the af parameter is unknown.

ioctl()
ioctl() — Controls I/O requests to obtain network information.

Format
#include <ioctl.h>
int ioctl (int s, int request, ... /* arg */);

Argument
s

Specifies the socket descriptor of the requested network device.

request

Specifies the type of ioctl command to be performed on the device. The request types are
grouped as follows:

185

Chapter 4. Sockets API Reference

● Socket operations

● File operations

● Interface operations

● ARP cache operations

● Routing table operations

Refer to Appendix B, "IOCTL Requests" for a complete list of supported IOCTL commands.

arg

Specifies arguments for this request. The type of arg is dependent on the specific ioctl() request
and device to which the ioctl() call is targeted.

Description
This function performs a variety of device-specific functions. The request and arg arguments are
passed to the file designated by the s argument and then interpreted by the device driver. The basic I/O
functions are performed through the read() and write() functions.

Encoded in an ioctl() request is whether the argument is an “in” argument or an “out” argument,
and the size of the arg argument in bytes. The macros and definitions used to specify an ioctl()
request are located in the IOCTL.H header file.

Return Values
-1

Error; errno is set to indicate the error.

Errors
EBADF

The s argument is not a valid socket descriptor.

EINTR

A signal was caught during the ioctl() operation.

If an underlying device driver detects an error, errno might be set to one of the following values:

EINVAL

Either the request or the arg argument is not valid.

ENOTTY

Reserved for VSI use. The s argument is not associated with a network device, or the specified
request does not apply to the specific network device.

ENXIO

The request and arg arguments are valid for this device driver, but the service requested cannot be
performed on the device.

186

Chapter 4. Sockets API Reference

listen()
listen() — Converts an unconnected socket into a passive socket and indicates that the TCP/IP
kernel should accept incoming connection requests directed to the socket. The $QIO equivalent is
the IO$_SETMODE service.

Format
int listen (int s, int backlog);

Arguments
s

A socket descriptor of type SOCK_STREAM created using the socket() function.

backlog

The maximum number of pending connections that can be queued on the socket at any given time.
The maximum number of pending connections can be set by specifying the value of the socket
subsystem attribute somaxconn. (Refer to the VSI TCP/IP Services for OpenVMS Tuning and
Troubleshooting guide for more information.) The default value for the maximum number of pending
connections is 1024.

Description
This function creates a queue for pending connection requests on socket s with a maximum size equal to
the value of backlog. Connections can then be accepted with the accept() function.

If a connection request arrives with the queue full (that is, more connections pending than specified
by the backlog argument), the request is ignored so that TCP retries can succeed. If the backlog has
not cleared by the time TCP times out, the connect() function fails with an errno indication of
ETIMEDOUT.

Related Functions
See also accept(), connect(), and socket().

Return Values
0

Successful completion.

-1

Error; errno is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.

187

Chapter 4. Sockets API Reference

EDESTADDRREQ

The socket is not bound to a local address, and the protocol does not support listening on an
unbound socket.

EINVAL

The socket is already connected, or the socket is shut down.

ENOBUFS

The system has insufficient resources to complete the call.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The referenced socket is not of a type that supports the operation listen().

ntohl()
ntohl() — Converts longwords from network byte order to host byte order.

Format
#include <in.h>
unsigned long ntohl (unsigned long netlong);

Argument

netlong

A longword in network byte order. Integers in network byte order cannot be used for arithmetic
computation on OpenVMS systems.

Description

This function converts 32-bit unsigned integers from network byte order to host byte order.

Data bytes transmitted over the network are expected to be in network byte order. Some hosts, like
OpenVMS, have an internal data representation format that is different from the network byte order; this
is called the host byte order. Network byte order places the byte with the most significant bits at lower
addresses, but OpenVMS host byte order places the most significant bits at the highest address.

This function can be used to convert IP addresses from network byte order to host byte order.

Return Value

x

A longword in host byte order.

188

Chapter 4. Sockets API Reference

ntohs()
ntohs() — Converts short integers from network byte order to host byte order.

Format
#include <in.h>
unsigned short ntohs (unsigned short netshort);

Argument
netshort

A short integer in network byte order. Integers in network byte order cannot be used for arithmetic
computation on OpenVMS systems.

Description
This function converts 16-bit unsigned integers from network byte order to host byte order.

Data bytes transmitted over the network are expected to be in network byte order. Some hosts, like
OpenVMS, have an internal data representation format that is different from the network byte order; this
is called the host byte order. Network byte order places the byte with the most significant bits at lower
addresses, but OpenVMS host byte order places the most significant bits at the highest address.

This function can be used to convert port numbers returned by getservent() from network byte
order to host byte order.

Return Value
x

A short integer in host byte order (OpenVMS systems).

poll()
poll() — Monitors conditions on multiple file descriptors.

Format
#include <poll.h>
int poll (struct pollfd fds[], nfds_t nfds, int timeout);

Arguments
fds

An array of pollfd structures, one for each file descriptor of interest. Each pollfd structure
includes the following members:

int fd The file descriptor
int events The requested conditions
int revents The reported conditions

189

Chapter 4. Sockets API Reference

nfds

The number of pollfd structures in the fds array.

timeout

The maximum length of time (in milliseconds) to wait for one of the specified events to occur.

Description
This function provides applications with a mechanism for multiplexing input/output over a set of file
descriptors. For each member of the array pointed to by fds, poll() examines the given file descriptor
for the events specified in events. The number of pollfd structures in the fds array is specified by
nfds. The poll() function identifies those file descriptors on which an application can read or write
data, or on which certain events have occurred.

The fds argument specifies the file descriptors to be examined and the events of interest for each file
descriptor. It is a pointer to an array with one member for each open file descriptor of interest. The
array's members are pollfd structures within which fd specifies an open file descriptor, and events
and revents are bitmasks constructed by OR-ing a combination of the following event flags:

● POLLIN

Normal data may be received without blocking.

● POLLRDNORM

Same as POLLIN.

● POLLRDBAND

Out-of-band data may be received without blocking.

● POLLPRI

Same as POLLRDBAND

● POLLOUT

Normal data may be written without blocking.

● POLLWRNORM

Same as POLLOUT.

● POLLWRBAND

Out-of-band data may be written without blocking.

If the value of fd is less than 0, events is ignored and revents is set to 0 in that entry on return
from poll(). In each pollfd structure, poll() clears the revents member except that where
the application requested a report on a condition by setting one of the bits of events listed above,
poll() sets the corresponding bit in revents if the requested condition is true.

If none of the defined events have occurred on any selected file descriptor, poll() waits at least
timeout milliseconds for an event to occur on any of the selected file descriptors. If the value of timeout

190

Chapter 4. Sockets API Reference

is 0, poll() returns immediately. If the value of timeout is -1, poll() blocks until a specified event
occurs or until the call is interrupted.

The poll() function is not affected by the O_NONBLOCK flag.

On OpenVMS, the poll() function supports sockets only.

Note

VSI recommends using the select() function for optimal performance. The poll() function is
provided to ease the porting of existing applications from other platforms.

Return Values
positive value

Upon successful completion, the total number of file descriptors selected (that is, file descriptors for
which the revents member is nonzero).

0

Successful completion. The call timed out and no file descriptors were selected.

-1

The poll() function failed. The errno is set to indicate the error.

Errors
EAGAIN

The allocation of internal data structures failed but a subsequent request may succeed.

EINTR

A signal was caught during the poll() function.

read()
read() — Reads data from a socket or file. The $QIO equivalent is the IO$_READVBLK function.

Format
#include <unixio.h>
int read(int d, void *buffer, int nbytes);

Arguments
d

A descriptor that must refer to a socket or file currently opened for reading.

buffer

The address of a user-provided buffer in which the input data is placed.

191

Chapter 4. Sockets API Reference

nbytes

The maximum number of bytes allowed in the read operation.

Description
This function reads bytes from a socket or file and places them in a user-defined buffer.

If the end of file is not reached, the read() function returns nbytes. If the end of file occurs during the
read() function, it returns the number of bytes read.

Upon successful completion, read() returns the number of bytes actually read and placed in the buffer.

Related Functions
See also socket().

Return Values
x

The number of bytes read and placed in the buffer.

0

Peer has closed the connection.

-1

Error; errno is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.

ECONNRESET

A connection was forcibly closed by a peer.

EFAULT

The data was specified to be received into a nonexistent or protected part of the process address
space.

EINTR

A signal interrupted the read() function before any data was available.

EINVAL

The MSG_OOB flag is set and no out-of-band data is available.

ENOBUFS

The system has insufficient resources to complete the call.

192

Chapter 4. Sockets API Reference

ENOMEM

The system did not have sufficient memory to fulfill the request.

ENOTCONN

A receive is attempted on a connection-oriented socket that is not connected.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The specified flags are not supported for this socket type or protocol.

EWOULDBLOCK

The socket is marked nonblocking, and no data is waiting to be received.

recv()
recv() — Receives bytes from a connected socket and places them into a user-provided buffer. The $QIO
equivalent is the IO$_READVBLK function.

Format
#include <types.h>
#include <socket.h>
int recv (int s, char *buf, int len, int flags); (_DECC_V4_SOURCE)
size_t recv (int s, void *buf, ssize_t len, int flags);
 (not_DECC_V4_SOURCE)

Arguments
s

A socket descriptor created as the result of a call to accept() or connect().

buf

A pointer to a user-provided buffer into which received data will be placed.

len

The size of the buffer pointed to by buf.

flags

A bit mask that can contain one or more of the following flags. The mask is built by using a logical
OR operation on the appropriate values.

Flag Description

MSG_OOB Allows you to receive out-of-band data.

If out-of-band data is available, it is read first. If no out-of-band data is
available, the MSG_OOB flag is ignored.

193

Chapter 4. Sockets API Reference

Flag Description
Use the send(), sendmsg(), and sendto() functions to send out-of-
band data.

MSG_PEEK Allows you to examine data in the receive buffer without removing it from the
system's buffers.

Description
This function receives data from a connected socket. To receive data on an unconnected socket, use the
recvfrom() or recvmsg() functions. The received data is placed in the buffer buf.

Data is sent by the socket's peer using the send, sendmsg(), sendto(), or write() functions.

Use the select() function to determine when more data arrives.

If no data is available at the socket, the recv() call waits for data to arrive, unless the socket is
nonblocking. If the socket is nonblocking, a -1 is returned with the external variable errno set to
EWOULDBLOCK.

Related Functions
See also read(), send(), sendmsg(), sendto(), and socket().

Return Values
x

The number of bytes received and placed in buf.

0

Peer has closed its send side of the connection.

-1

Error; errno is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.

ECONNRESET

A connection was forcibly closed by a peer.

EFAULT

The data was specified to be received into a nonexistent or protected part of the process address
space.

EINTR

A signal interrupted the recv() function before any data was available.

194

Chapter 4. Sockets API Reference

EINVAL

The MSG_OOB flag is set and no out-of-band data is available.

ENOBUFS

The system has insufficient resources to complete the call.

ENOMEM

The system did not have sufficient memory to fulfill the request.

ENOTCONN

A receive is attempted on a connection-oriented socket that is not connected.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The specified flags are not supported for this socket type or protocol.

EWOULDBLOCK

The socket is marked nonblocking, and no data is waiting to be received.

recvfrom()
recvfrom() — Receives bytes for a socket from any source.

Format
#include <types.h>
#include <socket.h>
int recvfrom (int s, char *buf, int len, int flags, struct sockaddr *from,
int *fromlen) ; (_DECC_V4_SOURCE)
ssize_t recvfrom (int s, void *buf, size_t len, int flags,
struct sockaddr *from, size_t *fromlen) ; (not_DECC_V4_SOURCE)

Arguments
s

A socket descriptor created with the socket() function and bound to a name using the bind()
function or as a result of the accept() function.

buf

A pointer to a buffer into which received data is placed.

len

The size of the buffer pointed to by buf.

195

Chapter 4. Sockets API Reference

flags

A bit mask that can contain one or more of the following flags. The mask is built by using a logical
OR operation on the appropriate values.

Flag Description

MSG_OOB Allows you to receive out-of-band data. If out-of-band data is available, it is
read first.

If no out-of-band data is available, the MSG_OOB flag is ignored. To send
out-of-band data, use the send(), sendmsg(), and sendto() functions.

MSG_PEEK Allows you to examine the data that is next in line to be received without
actually removing it from the system's buffers.

from

A buffer that the recvfrom() function uses to place the address of the sender who sent the data.

If from is non-null, the address is returned. If from is null, the address is not returned.

fromlen

Points to an integer containing the size of the buffer pointed to by from. On return, the integer is
modified to contain the actual length of the socket address structure returned.

Description
This function allows a named, unconnected socket to receive data. The data is placed in the buffer
pointed to by buf, and the address of the sender of the data is placed in the buffer pointed to by from
if from is non-null. The structure that from points to is assumed to be as large as the sockaddr
structure. See Section 3.2.12, "sockaddr Structure" for a description of the sockaddr structure.

To receive bytes from any source, the socket does not need to be connected.

You can use the select() function to determine if data is available.

If no data is available at the socket, the recvfrom() call waits for data to arrive, unless the socket
is nonblocking. If the socket is nonblocking, a -1 is returned with the external variable errno set to
EWOULDBLOCK.

Related Functions
See also read(), send(), sendmsg(), sendto(), and socket().

Return Values
x

The number of bytes of data received and placed in buf.

0

Successful completion.

196

Chapter 4. Sockets API Reference

-1

Error; errno is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.

ECONNRESET

A connection was forcibly closed by a peer.

EFAULT

A valid message buffer was not specified. Nonexistent or protected address space is specified for the
message buffer.

EINTR

A signal interrupted the recvfrom() function before any data was available.

EINVAL

The MSG_OOB flag is set, and no out-of-band data is available.

ENOBUFS

The system has insufficient resources to complete the call.

ENOMEM

The system did not have sufficient memory to fulfill the request.

ENOTCONN

A receive is attempted on a connection-oriented socket that is not connected.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The specified flags are not supported for this socket type.

ETIMEDOUT

The connection timed out when trying to establish a connection or when a transmission timed out on
an active connection.

EWOULDBLOCK

The NBIO (nonblocking) flag is set for the socket descriptor and the process delayed during the
write operation.

197

Chapter 4. Sockets API Reference

recvmsg()
recvmsg() — Receives bytes on a socket and places them into scattered buffers.

Format
#include <types.h>
#include <socket.h>
int recvmsg (int s, struct msghdr msg, int flags); (BSD Version 4.4)
int recvmsg (int s, struct omsghdr msg, int flags); (BSD Version 4.3)

Arguments
s

A socket descriptor created with the socket() function.

msg

A pointer to a msghdr structure for receiving the data. See Section 3.2.8, "msghdr Structure" for a
description of the msghdr structure.

flags

A bit mask that can contain one or more of the following flags. The mask is built by using a logical
OR operation on the appropriate values.

Flag Description

MSG_OOB Allows you to receive out-of-band data.

If out-of-band data is available, it is read first. If no out-of-band data is
available, the MSG_OOB flag is ignored. Use send(), sendmsg(), and
sendto() functions to send out-of-band data.

MSG_PEEK Allows you to peek at the data that is next in line to be received without
actually removing it from the system's buffers.

Description
You can use this function with any socket, whether or not it is in a connected state. It receives data sent
by a call to sendmsg(), send(), or sendto(). The message is scattered into several user buffers if
such buffers are specified.

To receive data, the socket does not need to be connected to another socket.

When the ioveciovcnt array specifies more than one buffer, the input data is scattered into
iovcnt buffers as specified by the members of the iovec array:

iov0, iov1, ..., ioviovcnt

When a message is received, it is split among the buffers by filling the first buffer in the list, then the
second, and so on, until either all of the buffers are full or there is no more data to be placed in the
buffers.

You can use the select() function to determine when more data arrives.

198

Chapter 4. Sockets API Reference

Related Functions
See also read(), send(), and socket().

Return Values
x

The number of bytes returned in the msg_iov buffers.

0

Successful completion.

-1

Error; errno is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.

ECONNRESET

A connection was forcibly closed by a peer.

EFAULT

The message argument is not in a readable or writable part of user address space.

EINTR

This function was interrupted by a signal before any data was available.

The MSG_OOB flag is set, and no out-of-band data is available. The value of the msg_iovlen
member of the msghdr structure is less than or equal to zero or is greater than IOV_MAX.)

ENOBUFS

The system has insufficient resources to complete the call.

ENOMEM

The system did not have sufficient memory to fulfill the request.

ENOTCONN

A receive is attempted on a connection-oriented socket that is not connected.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The specified flags are not supported for this socket type.

199

Chapter 4. Sockets API Reference

EWOULDBLOCK

The socket is marked nonblocking, and no data is ready to be received.

select()
select() — Allows you to poll or check a group of sockets for I/O activity. This function indicates which
sockets are ready to be read or written, or which sockets have an exception pending.

Format
#include <time.h>
int select (int nfds, int *readfds, int *writefds, int *execptfds,
struct timeval *timeout); (_DECC_V4_SOURCE)
int select (int nfds, fd_set *readfds, fd_set *writefds, int *execptfds,
struct timeval *timeout); (not_DECC_V4_SOURCE)

Arguments
nfds

The number of open objects that may be ready for reading or writing or that have exceptions
pending. The nfds argument is normally limited to FD_SETSIZE, which is defined in the
SOCKET.H header file. Note that a single process can have a maximum of 65535 simultaneous
channels (including sockets) on OpenVMS Alpha and I64 systems, and a maximum of 2047 on
OpenVMS VAX systems.

readfds

A pointer to an array of bits, organized as integers, that should be examined for read readiness. If
bit n of the longword is set, socket descriptor n is checked to see whether it is ready to be read. All
bits set in the bit mask must correspond to the file descriptors of sockets. The select() function
cannot be used on normal files.

On return, the array to which readfds points contains a bit mask of the sockets that are ready for
reading. Only bits that were set on entry to the select() function can be set on exit.

writefds

A pointer to an array of bits, organized as integers, that should be examined for write readiness. If bit
n of the longword is set, socket descriptor n is checked to see whether it is ready to be written to. All
bits set in the bit mask must correspond to socket descriptors.

On return, the array to which writefds points contains a bit mask of the sockets that are ready for
writing. Only bits that were set on entry to the select() function are set on exit.

exceptfds

A pointer to an array of bits, organized as integers, that is examined for exceptions. If bit n of the
longword is set, socket descriptor n is checked to see whether it has any pending exceptions. All bits
set in the bit mask must correspond to the file descriptors of sockets.

On return, the array exceptfds pointer contains a bit mask of the sockets that have exceptions
pending. Only bits that were set on entry to the select() function can be set on exit.

200

Chapter 4. Sockets API Reference

timeout

The length of time that the select() function should examine the sockets before returning. If
one of the sockets specified in the readfds, writefds, and exceptfds bit masks is ready for I/O, the
select() function returns before the timeout period expires.

The timeout argument points to a timeval structure. See Section 3.2.15, "timeval Structure" for a
description of the timeval structure.

Description
This function determines the I/O status of the sockets specified in the various mask arguments. It returns
when a socket is ready to be read or written, when the timeout period expires, or when exceptions occur.
If timeout is a non-null pointer, it specifies a maximum interval to wait for the selection to complete.

If the timeout argument is null, the select() function blocks indefinitely until a selected event
occurs. To effect a poll, the value for timeout should be non-null, and should point to a zero-value
structure.

If a process is blocked on a select() function while waiting for input for a socket and the sending
process closes the socket, then the select() function notes this as an event and unblocks the process.
The descriptors are always modified on return if the select() function returns because of the
timeout.

Note

When the socket option SO_OOBINLINE is set on the device socket, the select() function on both
read and exception events returns the socket mask that is set on both the read and the exception mask.
Otherwise, only the exception mask is set.

Related Functions
See also accept(), connect(), read(), recv(), recvfrom(), recvmsg(), send(),
sendmsg(), sendto(), and write().

Return Values
n

The number of sockets ready for I/O or pending exceptions. This value matches the number of
returned bits that are set in all output masks.

0

The select() function timed out before any socket became ready for I/O.

-1

Error; errno is set to indicate the error.

Errors
EBADF

One or more of the I/O descriptor sets specified an invalid file descriptor.

201

Chapter 4. Sockets API Reference

EINTR

A signal was delivered before the time limit specified by the timeout argument expired and before
any of the selected events occurred. The time limit specified by the timeout argument is invalid.

The nfds argument is less than zero, or greater than or equal to FD_SETSIZE.)

EAGAIN

Allocation of internal data structures failed. A later call to the select() function may complete
successfully.

ENETDOWN

TCP/IP Services was not started.

ENOTSOCK

The socket descriptor is invalid.

send()
send() — Sends bytes through a socket to its connected peer. The $QIO equivalent is the
IO$_WRITEVBLK function.

Format
#include <types.h>
#include <socket.h>
int send (int s, char *msg, int len, int flags); (_DECC_V4_SOURCE)
ssize_t send (int s, const void *msg, size_t len, int flags);
(not_DECC_V4_SOURCE)

Arguments
s

A socket descriptor created with the socket() function that was connected to another socket
using the accept() or connect() function.

msg

A pointer to a buffer containing the data to be sent.

len

The length, in bytes, of the data pointed to by msg.

flags

Can be either 0 or MSG_OOB. If it is MSG_OOB, the data is sent out of band. Data can be received
before other pending data on the receiving socket if the receiver also specifies MSG_OOB in the flag
argument of its recv() or recvfrom() call.

Description
This function sends data to a connected peer.

202

Chapter 4. Sockets API Reference

You can use this function only on connected sockets. To send data on an unconnected socket, use the
sendmsg() or sendto() function. The send() function passes data along to its connected peer,
which can receive the data by using the recv() or read() function.

Normally the send() function blocks if there is no space for the incoming data in the buffer. It waits
until the buffer space becomes available. If the socket is set to nonblocking and there is no space for the
data, the send() function fails with the EWOULDBLOCK error.

If the message is too large to be sent in one piece, and the socket type is SOCK_DGRAM, which requires
that messages be sent in one piece, send() fails with the EMSGSIZE error.

If the address specified is an INADDR_BROADCAST address, then the SO_BROADCAST socket
option must have been set and the process must have SYSPRV or BYPASS privilege for the I/O
operation to succeed.

A success return from the send() does not guarantee that the data has been received by the peer. All
errors (except EWOULDBLOCK) are detected locally. To determine when it is possible to send more data,
use the select() function.

Related Functions
See also read(), recv(), recvmsg(), recvfrom(), getsockopt(), and socket().

Return Values
n

The number of bytes sent. This value normally equals len.

-1

Error; errno is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.

ECONNRESET

A connection was forcibly closed by a peer.

EDESTADDRREQ

The socket is not connection-oriented, and no peer address is set.

EFAULT

The message argument is not in a readable or writable part of the user address space.

EINTR

A signal interrupted the send() before any data was transmitted.

203

Chapter 4. Sockets API Reference

EMSGSIZE

The message is too large to be sent all at once, as the socket requires.

ENETDOWN

The local network connection is not operational.

ENETUNREACH

The destination network is unreachable.

ENOBUFS

The system has insufficient resources to complete the call.

ENOTCONN

The socket is not connected or has not had the peer prespecified.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The socket argument is associated with a socket that does not support one or more of the values set
in flags.

EWOULDBLOCK

The socket is marked nonblocking, and no space is available for the send() function.

sendmsg()
sendmsg() — Sends gathered bytes through a socket to any other socket.

Format
#include <types.h>
#include <socket.h>
int sendmsg (int s, struct msghdr *msg, int flags); (BSD Version 4.4)
int sendmsg (int s, struct omsghdr *msg, int flags); (BSD Version 4.3)

Arguments
s

A socket descriptor created with the socket() function.

msg

A pointer to a msghdr structure containing the message to be sent. See Section 3.2.8, "msghdr
Structure" for a description of the msghdr structure.

204

Chapter 4. Sockets API Reference

The msg_iov field of the msghdr structure is used as a series of buffers from which data is read
in order until msg_iovlen bytes have been obtained.

flags

Can be either 0 or MSG_OOB. If it is equal to MSG_OOB, the data is sent out of band. Data can
be received before other pending data on the receiving socket if the receiver specifies a flag of
MSG_OOB.

Description
This function sends the data in a msghdr structure to any other socket.

You can use this function on any socket to send data to any named socket. The data in the msg_iov
field of the msghdr structure is sent to the socket whose address is specified in the msg_name field
of the structure. The receiving socket gets the data using the read(), recv(), recvfrom(), or
recvmsg() function. When the iovec array specifies more than one buffer, the data is gathered
from all specified buffers before being sent. See Section 3.2.6, "iovec Structure" for a description of the
iovec structure.

Normally the sendmsg() function blocks if there is no space for the incoming data in the buffer. It
waits until the buffer space becomes available. If the socket is set to nonblocking and there is no space
for the data, the sendmsg() function fails with the EWOULDBLOCK error.

If the message is too large to be sent in one piece, and the socket type is SOCK_DGRAM, which requires
that messages be sent in one piece, sendmsg() fails with the EMSGSIZE error.

If the address specified is an INADDR_BROADCAST address, the SO_BROADCAST socket option
must be set and the process must have OPER, SYSPRV, or BYPASS privilege for the I/O operation to
succeed.

A success return from sendmsg() does not guarantee that the data has been received by the peer. All
errors (except EWOULDBLOCK) are detected locally. To determine when it is possible to send more data,
use the select() function.

Related Functions
See also read(), recv(), recvfrom(), recvmsg(), socket(), and getsockopt().

Return Values
n

The number of bytes sent.

-1

Error; errno is set to indicate the error.

Errors
ENOTSOCK

The socket descriptor is invalid.

205

Chapter 4. Sockets API Reference

EFAULT

An invalid user space address is specified for an argument.

EMSGSIZE

The socket requires that messages be sent atomically, but the size of the message to be sent makes
this impossible.

EWOULDBLOCK

Blocks if the system does not have enough space for buffering the user data.

sendto()
sendto() — Sends bytes through a socket to any other socket. The $QIO equivalent is the
IO$_WRITEVBLK function.

Format
#include <types.h>
#include <socket.h>
int sendto (int s, char *msg, int len, int flags,
struct sockaddr *to, int tolen); (_DECC_V4_SOURCE)
ssize_t sendto (int s, const void *msg, size_t len, int flags,
const struct sockaddr *to, size_t tolen); (not_DECC_V4_SOURCE)

Arguments
s

A socket descriptor created with the socket() function.

msg

A pointer to a buffer containing the data to be sent.

len

The length of the data pointed to by the msg argument.

flags

Can be either 0 or MSG_OOB. If it is MSG_OOB, the data is sent out of band. Data can be received
before other pending data on the receiving socket if the receiver specifies MSG_OOB in the flag
argument of its recv(), recvfrom() or recvmsg() call.

to

Points to the address structure of the socket to which the data is to be sent.

tolen

The length of the address pointed to by the to argument.

206

Chapter 4. Sockets API Reference

Description
This function can be used on sockets to send data to named sockets. The data in the msg buffer is sent
to the socket whose address is specified in the to argument, and the address of socket s is provided to
the receiving socket. The receiving socket gets the data using the read(), recv(), recvfrom(), or
recvmsg() function.

Normally the sendto() function blocks if there is no space for the incoming data in the buffer. It
waits until the buffer space becomes available. If the socket is set to nonblocking and there is no space
for the data, the sendto() function fails with the EWOULDBLOCK error.

If the message is too large to be sent in one piece, and the socket type is SOCK_DGRAM, which requires
that messages be sent in one piece, sendto() fails with the EMSGSIZE error.

If the address specified is a INADDR_BROADCAST address, then the SO_BROADCAST socket option
must have been set and the process must have SYSPRV or BYPASS privilege for the I/O operation to
succeed.

A success return from the sendto() does not guarantee that the data has been received by the peer.
All errors (except EWOULDBLOCK) are detected locally. To determine when it is possible to send more
data, use the select() function.

Related Functions
See also read(), recv(), recvfrom(), recvmsg(), socket(), and getsockopt().

Return Values
n

The number of bytes sent. This value normally equals len.

-1

Error; errno is set to indicate the error.

Errors
EAFNOSUPPORT

Addresses in the specified address family cannot be used with this socket.

EBADF

The socket descriptor is invalid.

ECONNRESET

A connection was forcibly closed by a peer.

EDESTADDRREQ

You did not specify a destination address for the connectionless socket and no peer address is set.

EFAULT

An invalid user space address is specified for an argument.

207

Chapter 4. Sockets API Reference

EHOSTUNREACH

The destination host is unreachable.

EINTR

A signal interrupted sendto() before any data was transmitted.

EINVAL

The tolen argument is not a valid size for the specified address family.

EISCONN

The connection-oriented socket for which a destination address was specified is already connected.

EMSGSIZE

The message is too large to be sent all at once, as the socket requires.

ENETDOWN

The local network connection is not operational.

ENETUNREACH

The destination network is unreachable.

ENOBUFS

The system has insufficient resources to complete the call.

ENOMEM

The system did not have sufficient memory to fulfill the request.

ENOTCONN

The socket is connection-oriented but is not connected.

ENOTSOCK

The socket descriptor is invalid.

EOPNOTSUPP

The socket argument is associated with a socket that does not support one or more of the values set
in flags.

EPIPE

The socket is shut down for writing or is connection oriented, and the peer is closed or shut down
for reading. In the latter case, if the socket is of type SOCK_STREAM, the SIGPIPE signal is
generated to the calling process.

EWOULDBLOCK

The socket is marked nonblocking, and no space is available for the sendto() function.

208

Chapter 4. Sockets API Reference

sethostent()
sethostent() — Opens the hosts database file.

Format
#include <netdb.h>
void sethostent (int stay_open);

Argument
stay_open

Specifies a value used to indicate when to close the hosts database file
(TCPIP$ETC:IPNODES.DAT):

● A value of 0 closes the hosts database file after each call to the gethostbyname(),
gethostbyaddr(), or gethostent() function.

● A nonzero value keeps the hosts database file open after each call.

Description
This function opens the hosts database file and resets the file marker to the beginning of the file.

Passing a nonzero value to the stay_open argument keeps the connection open until the
endhostent() or exit() function is called.

Related Functions
See also endhostent().

setnetent()
setnetent() — Opens the networks database file.

Format
#include <netdb.h>
void setnetent (int stay_open);

Argument
stay_open

Specifies a value used to indicate when to close the networks database file
(TCPIP$SYSTEM:NETWORKS.DAT):

● A value of 0 closes the networks database file after each call to the getnetent() function.

● A nonzero value keeps the networks database file open after each call.

Description
This function opens the networks database file and resets the file marker to the beginning of the file.

209

Chapter 4. Sockets API Reference

Passing a nonzero stay_open argument keeps the connection open until you call the endnetent() or
exit() function.

Related Functions
See also endnetent(), getnetent(), and exit().

setprotoent()
setprotoent() — Sets the state of the protocols table.

Format
#include <netdb.h>
void setprotoent (int stay_open);

Argument
stay_open

Specifies a value used to indicate when to reset the protocols table index:

● A value of 0 resets the protocols table index after each call to the getprotoent function.

● A nonzero value does not reset the protocols table index after each call.

Description
This function sets the index marker to the beginning of the protocols table.

Passing a nonzero stay_open argument will allow the index to advance until you call the
endprotoent() or exit() function.

Related Functions
See also endprotoent(), exit(), and getprotoent().

Return Values
1

Indicates success.

0

Indicates an error; unable to access the protocols table.

setservent()
setservent() — Opens the services database file.

Format
#include <netdb.h>

210

Chapter 4. Sockets API Reference

void setservent (int stay_open);

Argument
stay_open

Specifies a value used to indicate when to close the services database file
(TCPIP$ETC:SERVICES.DAT):

● A value of 0 closes the services database file after each call to the setservent() function.

● A nonzero value keeps the services database file open after each call to setservent().

Description
This function opens the services database file and resets the file marker to the beginning of the file.

Passing a nonzero stay_open argument keeps the connection open until you call the endservent()
function or the exit() function.

Related Functions
See also endservent(), exit(), and getservent().

setsockopt()
setsockopt() — Sets options on a socket. The $QIO equivalent is the IO$_SETMODE function.

Format
#include <types.h>
#include <socket.h>
int setsockopt (int s, int level, int optname, char *optval,
int optlen); (_DECC_V4_SOURCE)
int setsockopt (int s, int level, int optname, const void *optval,
size_t optlen); (not_DECC_V4_SOURCE)

Arguments
s

A socket descriptor created by the socket() function.

level

The protocol level for which the socket options are to be modified. It can have one of the following
values:

SOL_SOCKET Set the options at the socket level.
p Any protocol number. Set the options for protocol level p. For IPv4, see the

IN.H header file for the IPPROTO values. For IPv6, see the IN6.H header file
for the IPPROTO_IPV6 values.

211

Chapter 4. Sockets API Reference

optname

Interpreted by the protocol specified in level. Options at each protocol level are documented with
the protocol.

Refer to:

● Table A.1, "Socket Options" for a list of socket options

● Table A.2, "TCP Protocol Options" for a list of TCP options

● Table A.3, "IP Protocol Options" for a list of IP options

optval

Points to a buffer containing the arguments of the specified option.

All socket-level options other than SO_LINGER should be nonzero if the option is to be enabled, or
zero if it is to be disabled.

SO_LINGER uses a linger structure argument defined in the SOCKET.H header file. This
structure specifies the desired state of the option and the linger interval. The option value for the
SO_LINGER command is the address of a linger structure. See Section 3.2.7, "linger Structure"
for a description of the linger structure.

If the socket is type SOCK_STREAM, which promises the reliable delivery of data, and l_onoff is
nonzero, the system blocks the process on the close() attempt until it is able to transmit the data
or until it decides it is unable to deliver the information. A timeout period, called the linger interval,
is specified in l_linger.

If l_onoff is set to zero and a close() is issued, the system processes the close in a manner
that allows the process to continue as soon as possible.

optlen

An integer specifying the size of the buffer pointed to by optval.

Description
This function manipulates options associated with a socket. Options can exist at multiple protocol levels.
They are always present at the uppermost socket level.

When manipulating socket options, specify the level at which the option resides and the name of the
option. To manipulate options at the socket level, specify the value of level as SOL_SOCKET. To
manipulate options at any other level, supply the protocol number of the appropriate protocol controlling
the option. For example, to indicate that an option is to be interpreted by TCP, set the value for the level
argument to the protocol number (IPPROTO_TCP) of TCP.

For IPv4, see the IN.H header file for the various IPPROTO values. For IPv6, see the IN6.H header file
for the various IPPROTO_IPV6 values.

Return Values
0

Successful completion.

212

Chapter 4. Sockets API Reference

-1

Error; errno is set to indicate the error.

Errors
EACCES

The calling process does not have appropriate permissions.

EBADF

The descriptor is invalid.

EDOM

The send and receive timeout values are too large to fit in the timeout fields of the socket structure.

EINVAL

The optlen argument is invalid.

EISCONN

The socket is already connected; the specified option cannot be set when the socket is in the
connected state.

EFAULT

The optval argument is not in a readable part of the user address space.

ENOBUFS

The system had insufficient resources to complete the call.

ENOPROTOOPT

The option is unknown.

ENOTSOCK

The socket descriptor is invalid.

EFAULT

The optname argument is invalid.

shutdown()
shutdown() — Shuts down all or part of a bidirectional connection on a socket. This function does not
allow further receives or sends, or both. The $QIO equivalent is the IO$_DEACCESS function with the
IO$M_SHUTDOWN function modifier.

Format
#include <socket.h>
int shutdown (int s, int how);

213

Chapter 4. Sockets API Reference

Arguments
s

A socket descriptor that is in a connected state as a result of a previous call to either connect()
or accept().

how

How the socket is to be shut down. Use one of the following values:

0 Do not allow further calls to recv() on the socket.
1 Do not allow further calls to send() on the socket.
2 Do not allow further calls to both send() and recv().

Description
This function allows communications on a socket to be shut down one direction at a time rather
than all at once. You can use the shutdown() function to shut down one direction in a full-duplex
(bidirectional) connection.

Related Functions
See also connect() and socket().

Return Values
0

Successful completion.

-1

Error; errno is set to indicate the error.

Errors
EBADF

The socket descriptor is invalid.

EINVAL

The how argument is invalid.

ENOBUFS

The system has insufficient resources to complete the call.

ENOTCONN

The specified socket is not connected.

ENOTSOCK

The socket descriptor is invalid.

214

Chapter 4. Sockets API Reference

socket()
socket() — Creates an endpoint for communication by returning a special kind of file descriptor called
a socket descriptor, which is associated with a TCP/IP Services socket device channel. The $QIO
equivalent is the IO$_SETMODE function.

Format
#include <types.h>
#include <socket.h>
int socket (int af, int type, int protocol);

Arguments
af

The address family used in later references to the socket. Addresses specified in subsequent
operations using the socket are interpreted according to this family. Use one of the following:

● AF_INET for the IPv4 address family

● AF_INET6 for the IPv6 address family

● TCPIP$C_AUXS

For a network application server with the LISTEN flag enabled, you specify the TCPIP
$C_AUXS address family to obtain the connected device socket created by the auxiliary server
in response to incoming network traffic.

type

The socket types are:

● SOCK_STREAM — Provides sequenced, reliable, two-way, connection-based byte streams with
an available out-of-band data transmission mechanism.

● SOCK_DGRAM — Provides datagram transmissions. A datagram is a connectionless,
unreliable data transmission mechanism.

● SOCK_RAW — Provides access to internal network interfaces. Available only to users with the
SYSPRV privilege.

protocol

The protocol to be used with the socket. Normally, only a single protocol exists to support a
particular socket type using a given address format. However, if many protocols exist, a particular
protocol must be specified with this argument. Use the protocol number that is specific to the
address family.

Description
This function provides the primary mechanism for creating sockets. The type and protocol of the socket
affect the way the socket behaves and how it can be used.

The operation of sockets is controlled by socket-level options, which are defined in the SOCKET.H
header file and described in the setsockopt() function section of this chapter.

215

Chapter 4. Sockets API Reference

Use the setsockopt() and getsockopt() functions to set and get options. Options take an
integer argument that should be nonzero if the option is to be enabled or zero if it is to be disabled.
SO_LINGER uses a linger structure argument (see Section 3.2.7, "linger Structure").

Related Functions
See also accept(), bind(), connect(), getsockname(), getsockopt(),
socketpair(), listen(), read(), recv(), recvfrom(), recvmsg(), select(),
send(), sendmsg(), sendto(), shutdown(), and write().

Return Values
x

A file descriptor that refers to the socket descriptor.

-1

Error; errno is set to indicate the error.

Errors
EACCES

The process does not have sufficient privileges.

EAFNOSUPPORT

The specified address family is not supported in this version of the system.

EMFILE

The per-process descriptor table is full.

ENETDOWN

TCP/IP Services was not started.

ENFILE

No more file descriptors are available for the system.

ENOBUFS

The system has insufficient resources to complete the call.

ENOMEM

The system was unable to allocate kernel memory to increase the process descriptor table.

EPERM

The process is attempting to open a raw socket and does not have SYSTEM privilege.

EPROTONOSUPPORT

The socket in the specified address family is not supported.

216

Chapter 4. Sockets API Reference

EPROTOTYPE

The socket type is not supported by the protocol.

ESOCKTNOSUPPORT

The specified socket type is not supported in this address family.

socketpair()
socketpair() — Creates a pair of connected sockets.

Format
#include <sys/socket.h>
int socketpair (int domain, int type, int protocol, int socket_vector[2]);

Arguments
af

The address family in which the sockets are to be created. Use one of the following:

● AF_INET for the IPv4 address family

● AF_INET6 for the IPv6 address family

● TCPIP$C_AUXS or a network application server with the LISTEN flag enabled. Specify the
TCPIP$C_AUXS address family to obtain the connected device socket created by the auxiliary
server in response to incoming network traffic.

type

Specifies the type of sockets to be created. The socket types are:

● SOCK_STREAM — Provides sequenced, reliable, two-way, connection-based byte streams with
an available out-of-band data transmission mechanism.

● SOCK_DGRAM — Supports datagrams (connectionless, unreliable data transmission
mechanism).

● SOCK_SEQPACKET — Provides sequenced, reliable, bidirectional, connection-mode
transmission paths for records. A record can be sent using one or more output operations and
received using one or more input operations, but a single operation never transfers part of more
than one record.

Use the MSG_EOR flag to determine the record boundaries.

protocol

The protocol to be used with the socket. Normally, only a single protocol exists to support a
particular socket type using a given address format. However, if many protocols exist, a particular
protocol must be specified with this argument. Use the protocol number that is specific to the
address family.

217

Chapter 4. Sockets API Reference

If the protocol argument is 0, the function uses the default protocol for the specified socket type.

If the protocol argument is non-zero, the function uses the default protocol for the address family.

socket_vector

A 2-integer array to hold the file descriptors of the created socket pair.

Description
This function creates an unbound pair of connected sockets in a specified address family, of a
specified type, under the protocol optionally specified by the protocol argument. The two sockets
will be identical. The file descriptors used in referencing the created sockets are returned in
socket_vector[0] and socket_vector[1].

Appropriate privileges are required to use the socketpair() function or to create some sockets.

Related Functions
See also socket().

Return Values
0

Successful completion

-1

Error; errno is set to indicate the error.

Errors
EACCES

The process does not have sufficient privileges.

EAFNOSUPPORT

The specified address family is not supported in this version of the system.

EMFILE

The per-process descriptor table is full.

ENETDOWN

TCP/IP Services was not started.

ENFILE

No more file descriptors are available for the system.

ENOBUFS

The system has insufficient resources to complete the call.

218

Chapter 4. Sockets API Reference

ENOMEM

The system was unable to allocate kernel memory to increase the process descriptor table.

EPERM

The process is attempting to open a raw socket and does not have SYSTEM privilege.

EPROTONOSUPPORT

The socket in the specified address family is not supported.

EPROTOTYPE

The socket type is not supported by the protocol.

ESOCKTNOSUPPORT

The specified socket type is not supported in this address family.

write()
write() — Writes bytes from a buffer to a file or socket. The $QIO equivalent is the IO$_WRITEVBLK
function.

Format
#include <unixio.h>
int write(int d, void *buffer, int nbytes);

Arguments
d

A descriptor that refers to a socket or file.

buffer

The address of a buffer from which the output data is to be taken.

nbytes

The maximum number of bytes involved in the write operation.

Description
This function attempts to write a buffer of data to a socket or file.

Related Functions
See also socket().

Return Values
x

The number of bytes written to the socket or file.

219

Chapter 4. Sockets API Reference

-1

Error; errno is set to indicate the error.

Errors
EPIPE

The socket is shut down for writing or is connection oriented, and the peer is closed or shut down
for reading. In the latter case, if the socket is of type SOCK_STREAM, the SIGPIPE signal is
generated to the calling process.

EWOULDBLOCK

The NBIO (nonblocking) flag is set for the socket descriptor, and the process is delayed during the
write operation.

EINVAL

The nbytes argument is a negative value.

EAGAIN

The O_NONBLOCK flag is set on this file, and the process is delayed in the write operation.

EBADF

The d argument does not specify a valid file descriptor that is open for writing.

EINTR

A write() function on a pipe is interrupted by a signal, and no bytes have been transferred
through the pipe.

EINVAL

On of the following errors occurred:

● The STREAM or multiplexer referenced by d is linked (directly or indirectly) downstream from
a multiplexer.

● The file position pointer associated with the d argument was a negative value.

EPERM

An attempt was made to write to a socket of type SOCK_STREAM that is not connected to a peer
socket.

An attempt was made to write to a pipe that has only one end open.

An attempt was made to write to a pipe or FIFO that is not opened for reading by any process. A
SIGPIPE signal is sent to the process.)

ERANGE

An attempt was made to write to a STREAM socket where the value of nbytes is outside the
specified minimum and maximum range, and the minimum value is nonzero.

220

Chapter 5. Using the $QIO System
Service
This chapter describes how to use the $QIO system service and its data structures with TCP/IP Services.

After you create a network pseudodevice (BG:) and assign a channel to it, use the $QIO system service
for I/O operations.

5.1. $QIO System Service Variations
The two variations of the $QIO system service are:

● Queue I/O Request ($QIO) — Completes asynchronously. It returns to the caller immediately after
queuing the I/O request, without waiting for the I/O operation to complete.

● Queue I/O Request and Wait ($QIOW) — Completes synchronously. It returns to the caller after the
I/O operation completes.

The only difference between the $QIO and $QIOW calling sequences is the service name. The system
service arguments are the same.

5.2. $QIO Format
The $QIO calling sequence has the following format:

SYS$QIO [efn], chan, func, [iosb], [astadr], [astprm], [p1], [p2], [p3], [p4], [p5], [p6]

Table 5.1, "$QIO Arguments" describes each argument.

Table 5.1. $QIO Arguments

Argument Description

astadr AST (asynchronous system trap) service routine
astprm AST parameter to be passed
chan I/O channel
efn Event flag number
func Network pseudodevice function code and/or

function modifier
iosb I/O status block
p1, p2, p3, p4, p5, p6 Function-specific I/O request parameters

5.2.1. Symbol Definition Files
Table 5.2, "Network Symbol Definition Files" lists the symbol definition files for the $QIO arguments
p1 through p6. Use the standard mechanism for the programming language you are using to include the
appropriate symbol definition files in your program.

221

Chapter 5. Using the $QIO System Service

Table 5.2. Network Symbol Definition Files

File Name Language

TCPIP$INETDEF.H VSI C
TCPIP$INETDEF.FOR VAX Fortran
TCPIP$INETDEF.PAS VAX PASCAL
TCPIP$INETDEF.MAR MACRO-32
TCPIP$INETDEF.PLI VAX PL/1
TCPIP$INETDEF.R32 BLISS-32
TCPIP$INETDEF.ADA VAX Ada
TCPIP$INETDEF.BAS VAX BASIC

5.3. $QIO Functions
Table 5.3, "$QIO Function Codes" lists the $QIO function codes commonly used in a network
application.

Note

The IO$_SETMODE and IO$_SETCHAR function codes are identical. All references to the IO
$_SETMODE function code, its arguments, options, function modifiers, and condition values returned
also apply to the IO$_SETCHAR function code, which is not explicitly described in this manual.

The IO$_SENSEMODE and IO$_SENSECHAR function codes are identical. All references to the
IO$_SENSEMODE function code, its arguments, options, function modifiers, and condition values
returned also apply to the IO$_SENSECHAR function code, which is not explicitly described in this
manual.

Table 5.3. $QIO Function Codes

Function Description

$QIO(IO$_SETMODE)

$QIO(IO$_SETCHAR)

Creates the socket by setting the internet domain,
protocol (socket) type, and protocol of the socket.

Binds a name (local address and port) to the
socket.

Defines a network pseudodevice as a listener on a
TCP/IP server.

Specifies socket options.
$QIO(IO$_ACCESS) Initiates a connection request from a client to a

remote host using TCP.

Specifies the peer where you can send datagrams.

Accepts a connection request from a TCP/IP client
when used with the IO$M_ACCEPT function
modifier.

222

Chapter 5. Using the $QIO System Service

Function Description

$QIO(IO$_WRITEVBLK) Writes data (virtual block) from the local host to
the remote host for stream sockets, datagrams, and
raw IP.

$QIO(IO$_READVBLK) Reads data (virtual block) from the remote host to
the local host for stream sockets, datagrams, and
raw IP.

$QIO(IO$_DEACCESS) Disconnects the link established between
two communication agents through an IO
$_DEACCESS function.

Shuts down the communication link when used
with the IO$M_SHUTDOWN function modifier.
You can shut down the receive or transmit portion
of the link, or both.

$QIO(IO$_SENSECHAR)

$QIO(IO$_SENSEMODE)

Obtains socket information.

5.4. $QIO Arguments
You pass two types of arguments with the $QIO system service: function-independent arguments and
function-dependent arguments. The following sections provide information about $QIO system service
arguments.

5.4.1. $QIO Function-Independent Arguments
Table 5.4, "$QIO Function-Independent Arguments" describes the $QIO function-independent arguments.

Table 5.4. $QIO Function-Independent Arguments

Argument Description

astadr Address of the asynchronous system trap (AST) routine to
be executed when the I/O operation is completed.

astprm A quadword (Alpha and I64) or longword (VAX) containing
the value to be passed to the AST routine.

chan A longword value that contains the number of the I/O
channel. The $QIO system service uses only the low-order
word.

efn A longword value of the event flag number that the $QIO
system service sets when the I/O operation completes. The
$QIO system service uses only the low-order byte.

func A longword value that specifies the network pseudodevice
function code and function modifiers that specify the
operation to be performed.

Function modifiers affect the operation of a specified
function code. In MACRO-32, you use the exclamation
point (!) to logically OR the function code and its modifier.

223

Chapter 5. Using the $QIO System Service

Argument Description
In VSI C, you use the vertical bar (|). This manual uses the
vertical bar (|) in text.

iosb The I/O status block that receives the final status message
for the I/O operation. The iosb argument is the address of
the quadword I/O status block. (For the format of the I/O
status block, see Section 5.4.2, "I/O Status Block".)

5.4.2. I/O Status Block
The system returns the status of a $QIO operation in the I/O status block (IOSB) supplied as an
argument to the $QIO call. In the case of a successful IO$_READVBLK or IO$_WRITEVBLK
operation, the second word of the I/O status block contains the number of bytes transferred during the
operation (see Figure 5.1, "I/O Status Block for a Successful READ or WRITE Operation").

Figure 5.1. I/O Status Block for a Successful READ or WRITE Operation

With an unsuccessful IO$_READVBLK or IO$_WRITEVBLK operation, in most cases, the system
returns a UNIX error code in the second word of the I/O status block.

For C programs, the OpenVMS completion codes are defined in the SSDEF.H header file. The UNIX
error codes are defined in the ERRNO.H header file and in the TCPIP$INETDEF.H header file. For
other language variants, see Table 5.2, "Network Symbol Definition Files".

5.4.3. $QIO Function-Dependent Arguments
Arguments p1, p2, p3, p4, p5, and p6 to the $QIO system service are used to pass function-dependent
arguments. Table 5.5, "$QIO Function-Dependent Arguments" lists arguments p1 through p6 for the
$QIO system service and indicates whether the parameter is passed by value, by reference, or by
descriptor.

Table 5.5. $QIO Function-Dependent Arguments

$QIO p1 p2 p3 p4 p5 p6

IO$_ACCESS Not used Not used Remote
socket
name 4

Not used Not used Not used

IO$_ACCESS | IO$M_ACCEPT Not used Not used Remote
socket
name 5

Channel
number 2

Not used Not used

IO$_ACPCONTROL Sub
function
code 3

Input
parameter
3

Buffer
length 2

Buffer 3 Not used Not used

IO$_DEACCESS Not used Not used Not used Not used Not used Not used

224

Chapter 5. Using the $QIO System Service

$QIO p1 p2 p3 p4 p5 p6

IO$_DEACCESS | IO
$M_SHUTDOWN

Not used Not used Not used Shutdown
flags 1

Not used Not used

IO$_READVBLK Buffer 2 Buffer
size 1

Remote
socket
name 5

Flags 1 Not used Output
buffer list
3

IO$_READVBLK | IO
$M_INTERRUPT

Buffer 2 Buffer
size 1

Not used Not used Not used Not used

IO$_WRITEVBLK Buffer 2 Buffer
size 1

Remote
socket
name 4

Flags 1 Input
buffer list
3

Not used

IO$_WRITEVBLK | IO
$M_INTERRUPT

Buffer 2 Buffer
size 1

Not used Not used Not used Not used

IO$_SETMODE Socket
char 2

Not used Local
socket
name 4

Backlog
limit 1

Input
parameter
list 4

Not used

IO$_SETMODE | IO$_OUTBAND AST
procedure
2

User
argument
1

Access
mode 1

Not used Not used Not used

IO$_SETMODE | IO
$_READATTN

AST
procedure
2

User
argument
1

Access
mode 1

Not used Not used Not used

IO$_SETMODE | IO$WRTATTN AST
procedure
2

User
argument
1

Access
mode 1

Not used Not used Not used

IO$_SENSEMODE Not used Not used Local
socket
name 5

Remote
socket
name 5

Not used Output
parameter
list 4

4By item_list_2 descriptor.
5By item_list_3 descriptor.
2By reference.
3By descriptor.
1By value.

5.5. Passing Arguments by Descriptor
In addition to OpenVMS argument descriptors, I/O functions specific to TCP/IP Services also pass
arguments by using item_list_2 and item_list_3 argument descriptors. The format of these
argument descriptors is unique to TCP/IP Services, and they supplement argument descriptors defined in
the OpenVMS Calling Standard.

Use of an item_list_2 or item_list_3 argument descriptor is indicated when the argument's
passing mechanism is specified as an item_list_2 descriptor or an item_list_3 descriptor.
To determine an argument's passing mechanism, refer to the argument's description in Chapter 6,
"OpenVMS System Services Reference".

The item_list_2 argument descriptors describe the size, data type, and starting address of a service
parameter. An item_list_2 argument descriptor contains three fields, as depicted in the following
diagram:

225

Chapter 5. Using the $QIO System Service

The first field is a word containing the length (in bytes) of the parameter being described. The second
field is a word containing a symbolic code specifying the data type of the parameter. The third field is a
longword containing the starting address of the parameter.

The item_list_3 argument descriptors describe the size, data type, and address of a buffer in which
a service writes parameter information returned from a get operation. An item_list_3 argument
descriptor contains four fields, as depicted in the following diagram:

The first field is a word containing the length (in bytes) of the buffer in which a service writes
information. The length of the buffer needed depends on the data type specified in the type field. If the
value of buffer length is too small, the service truncates the data. The second field is a word containing a
symbolic code specifying the type of information that a service is to return. The third field is a longword
containing the address of the buffer in which a service writes the information. The fourth field is a
longword containing the address of a longword in which a service writes the length (in bytes) of the
information it actually returned.

Note

When a parameter specified as a descriptor is described as “read-only”, the descriptor itself is only read,
and TCP/IP Services does not modify the memory described. However, system service postprocessing
requires that the described memory must be both readable and writable.

5.5.1. Specifying an Input Parameter List
Use the p5 argument with the IO$_SETMODE function to specify input parameter lists. The p5
argument specifies the address of a item_list_2 descriptor that points to and identifies the type of
input parameter list.

To initialize an item_list_2 descriptor, you need to:

1. Set the descriptor's type field to one of the following symbolic codes to specify the type of input
parameter list:

Symbolic Name Input Parameter List Type

TCPIP$C_SOCKOPT Socket options
TCPIP$C_TCPOPT TCP protocol options
TCPIP$C_IPOPT IP protocol options
TCPIP$C_IOCTL I/O control commands

2. Set the descriptor's length field to specify the length of the input parameter list.

3. Set the descriptor's address field to specify the starting address of the input parameter list.

226

Chapter 5. Using the $QIO System Service

Figure 5.2, "Specifying an Input Parameter List" illustrates how the p5 argument specifies an input
parameter list.

Figure 5.2. Specifying an Input Parameter List

As the name implies, input parameter lists consist of one or more contiguous item_list_2 or
ioctl_comm structures. The length of a input parameter list is determined solely from the length
field of its associated argument descriptor. Input parameter lists are never terminated by a longword
containing a zero.

Each item_list_2 structure that appears in an input parameter list describes an individual parameter
or item to set. Such items include socket or protocol options as identified by the item's type field.

To initialize an item_list_2 descriptor, you need to:

1. Set the item's type field to one of the symbolic codes found in the following tables:

Table A.1, "Socket Options"
Table A.2, "TCP Protocol Options"
Table A.3, "IP Protocol Options"

2. Set the item's length field to specify the length of the item.

3. Set the item's address field to specify the starting address of its data.

Figure 5.3, "Setting Socket Options" illustrates how to specify setting socket options.

Figure 5.3. Setting Socket Options

Each ioctl_comm structure appearing in an input parameter list contains an I/O control command –
the IOCTL request code (as defined by $SIOCDEF) and its associated IOCTL structure address. Figure
5.4, "Setting IOCTL Parameters" illustrates how to specify (set) I/O control (IOCTL) commands.

227

Chapter 5. Using the $QIO System Service

Figure 5.4. Setting IOCTL Parameters

5.5.2. Specifying an Output Parameter List
Use the p6 argument with the IO$_SENSEMODE function to specify output parameter lists. The p6
argument specifies the address of an item_list_2 descriptor that points to and identifies the type of
output parameter list.

To initialize an item_list_2 descriptor, you need to:

1. Set the descriptor's type field to one of the following symbolic codes to specify the type of output
parameter list:

Symbolic Name Output Parameter List Type

TCPIP$C_SOCKOPT Socket options
TCPIP$C_TCPOPT TCP protocol options
TCPIP$C_IPOPT IP protocol options
TCPIP$C_IOCTL I/O control commands

2. Set the descriptor's length field to specify the length of the output parameter list.

3. Set the descriptor's address field to specify the starting address of the output parameter list.

Figure 5.5, "Specifying an Output Parameter List" illustrates how the p6 argument specifies an output
parameter list.

Figure 5.5. Specifying an Output Parameter List

228

Chapter 5. Using the $QIO System Service

As the name implies, output parameter lists consist of one or more contiguous item_list_3 or
ioctl_comm structures. The length of an output parameter list is determined solely from the length
field of its associated argument descriptor. Output parameter lists are never terminated by a longword
containing a zero.

Each item_list_3 structure that appears in an output parameter list describes an individual
parameter or item to return. Such items include socket or protocol options as identified by the item's type
field.

To initialize an item_list_3 structure, you need to:

1. Set the item's type field to one of symbolic codes found in the following tables:

Table A.1, "Socket Options"
Table A.2, "TCP Protocol Options"
Table A.3, "IP Protocol Options"

2. Set the item's buffer length field to specify the length of its buffer.

3. Set the item's buffer address field to specify the starting address of its buffer.

4. Set the item's returned length address field to specify the address of a longword to receive the length
in bytes of the information actually returned for this item.

Figure 5.6, "Getting Socket Options" illustrates how to specify getting socket options.

Figure 5.6. Getting Socket Options

Each ioctl_comm structure appearing in a output parameter list contains an I/O control command –
the IOCTL request code (as defined by $SIOCDEF) and its associated IOCTL structure address. For
more information about IOCTL requests, see Appendix B, "IOCTL Requests".

Figure 5.7, "Getting IOCTL Parameters" illustrates how to specify (get) I/O control (IOCTL) commands.

229

Chapter 5. Using the $QIO System Service

Figure 5.7. Getting IOCTL Parameters

5.5.3. Specifying a Socket Name
Use the p3 or p4 argument with the IO$_ACCESS, IO$_READVBLK, IO$_SENSEMODE, IO
$_SETMODE, and IO$_WRITEVBLK functions to specify a socket name. The p3 and p4 arguments
specify the address of an item_list_2 or item_list_3 descriptor that points to a socket name
structure. The socket name structure contains (among other things), the address domain, port number,
and host internet address.

Note

Port numbers 1 to 1023 require SYSPRV and BYPASS privileges when assigned. If you specify 0 when
binding a socket name, the system assigns an available port.

Use an item_list_2 argument descriptor with the IO$_ACCESS, IO$_WRITEVBLK, and IO
$_SETMODE functions to specify (set) a socket name. The descriptor's parameter type is TCPIP
$C_SOCK_NAME.

Use an item_list_3 argument descriptor with the IO$_ACCESS |IO$M_ACCEPT, IO
$_READVBLK, and IO$_SENSEMODE functions to specify (get) a socket name. The descriptor's
parameter type is TCPIP$C_SOCK_NAME.

With BSD Version 4.3, specify IPv4 socket names as illustrated in Figure 5.8, "Specifying IPv4 Socket
Names (BSD Version 4.3)".

230

Chapter 5. Using the $QIO System Service

Figure 5.8. Specifying IPv4 Socket Names (BSD Version 4.3)

With BSD Version 4.4, specify IPv4 socket names as illustrated in Figure 5.9, "Specifying IPv4 Socket
Names (BSD Version 4.4)".

Figure 5.9. Specifying IPv4 Socket Names (BSD Version 4.4)

Specify IPv6 socket names as illustrated in Figure 5.10, "Specifying IPv6 Socket Names (BSD Version
4.4)".

231

Chapter 5. Using the $QIO System Service

Figure 5.10. Specifying IPv6 Socket Names (BSD Version 4.4)

Note that the first byte in the socket name is the length field. To accommodate this field, use the IO
$M_EXTEND function modifier for all I/O functions that take a socket name as an output argument (IO
$_ACCESS |IO$M_ACCEPT, IO$_READVBLK, and IO$_SENSEMODE). Always use a buffer large
enough to accept IPv6 socket names when you use the IO$M_EXTEND function modifier.

5.5.4. Specifying a Buffer List
Use the p5 argument with the IO$_WRITEVBLK function to specify input buffer lists. The p5
argument specifies the address of a 32- or 64-bit fixed-length descriptor (on Alpha and I64 systems) or a
32-bit fixed-length descriptor (on VAX systems) pointing to an input buffer list.

Use the p6 argument with the IO$_READVBLK function to specify output buffer lists. The p6
argument specifies the address of a 32- or 64-bit fixed-length descriptor (on Alpha and I64 systems) or a
32-bit fixed-length descriptor (on VAX systems) pointing to an output buffer list.

To initialize a p5 or p6 argument descriptor, you need to:

1. Set the descriptor's data-type code (the DTYPE field) to DSC$K_DTYPE_DSC to specify a buffer
list containing one or more descriptors defining the length and starting address of user buffers.

2. Set the descriptor's class code (the CLASS field) to DSC$K_CLASS_S.

3. Set the descriptor's length field to specify the length of the buffer list.

4. Set the descriptor's MBO field to 1 and the MBMO field to all 1s if this is a 64-bit argument
descriptor.

Figure 5.11, "Specifying a Buffer List" illustrates how to specify a buffer list.

232

Chapter 5. Using the $QIO System Service

Figure 5.11. Specifying a Buffer List

Buffer lists, as the name implies, consist of one or more contiguous 32- or 64-bit fixed-length descriptors
(on Alpha and I64 systems) or 32-bit fixed-length descriptors (on VAX systems).

Each 32- or 64-bit descriptor that appears in a buffer list describes one user buffer. Initialize each
descriptor by setting its data type, class, length, and address fields as appropriate for 32- and 64-bit
descriptors.

For more information about using 32-bit and 64-bit descriptors, refer to the OpenVMS Calling Standard.

233

Chapter 5. Using the $QIO System Service

234

Chapter 6. OpenVMS System
Services Reference
This chapter provides detailed information about the OpenVMS system services for writing network
applications. The chapter also describes the network pseudodevice driver and TELNET port driver I/O
functions used with the $QIO system service.

The descriptions of the system services and I/O function codes are targeted specifically for network
application programmers. For a general description of these system services and I/O function codes, see
the VSI OpenVMS System Services Reference Manual manuals.

Table 6.1, "OpenVMS System Service and Equivalent Sockets API Function" lists the equivalent Sockets
API function for each system service and $QIO I/O function code in this chapter. See Chapter 4,
"Sockets API Reference" for descriptions of the Sockets API functions.

Table 6.1. OpenVMS System Service and Equivalent Sockets API Function

OpenVMS System Service Sockets API Function or Description

$ASSIGN socket()

$CANCEL close()

$DASSGN close()

$QIO
Network Pseudodevice I/O Function Codes:

IO$_ACCESS connect()

IO$_ACCESS|IO$M_ACCEPT accept()

IO$_ACPCONTROL gethostbyname(), gethostbyaddr(),
getnetbyname(), getnetbyaddr()

IO$_DEACCESS close()

IO$_DEACCESS|IO$M_SHUTDOWN shutdown()

IO$_READVBLK read(), recv(), recvfrom(), recvmsg()
IO$_SENSEMODE getsockopt(), ioctl(),

getpeername(), getsockname()
IO$_SENSECHAR getsockopt(), ioctl(),

getpeername(), getsockname()
IO$_SETMODE socket(), bind(), listen(),

setsockopt(), ioctl()
IO$_SETCHAR socket(), bind(), listen(),

setsockopt(), ioctl()
IO$_WRITEVBLK send(), sendto(), sendmsg(), write()
TELNET Port Driver I/O Function Codes:

IO$_TTY_PORT
IO$M_TN_STARTUP Binds a socket to a TELNET terminal device.
IO$M_TN_SHUTDOWN Breaks a previously bound socket terminal

connection.

235

Chapter 6. OpenVMS System Services Reference

OpenVMS System Service Sockets API Function or Description

IO$_TTY_PORT_BUFIO
IO$M_TN_SENSEMODE Reads parameters associated with the device.
IO$M_TN_SETMODE Writes parameters associated with the device.

6.1. System Service Descriptions
This section describes the OpenVMS system services used to write network applications.

Detailed information about each argument is listed for each I/O function. The following format is used to
describe each argument:

argument-name

OpenVMS usage: OpenVMS data type
type: argument data type
access: argument access
mechanism: argument passing mechanism

The purpose of the OpenVMS usage entry is to facilitate the coding of source-language data type
declarations in application programs. Ordinarily, the standard data type is sufficient to describe the
type of data passed by an argument. However, within the OpenVMS operating system environment,
many system routines contain arguments whose conceptual nature or complexity requires additional
explanation.

To determine the correct syntax of the data type you are using, refer to the appropriate language
implementation table in Appendix C, "Data Types".

Note that the OpenVMS usage entry is not a traditional data type (such as the standard data types of
byte, word, longword, and so on). It is significant only within the context of the OpenVMS operating
system and is intended solely to expedite data declarations within application programs.

Assign I/O Channel
Assign I/O Channel — Provides a calling process with an I/O channel, thereby allowing the calling
process to perform I/O operations on the network pseudodevice. On Alpha and I64 systems, this service
accepts 64-bit addresses.

Format
SYS$ASSIGN devnam, chan, [acmode], [mbxnam], [flags]

C Prototype
int sys$assign(void *devnam, unsigned short int *chan, unsigned int acmode,
 void *mbxnam,...);

Returns

OpenVMS usage: cond_value

236

Chapter 6. OpenVMS System Services Reference

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a condition value in R0.
Condition values that can be returned by this service are listed under Condition Values Returned.

Arguments
devnam

OpenVMS usage: device_name
type: character-coded text string
access: read only
mechanism: (Alpha and I64) by 32- or 64-bit descriptor-fixed-length string descriptor

(VAX) by 32-bit descriptor-fixed-length string descriptor

Name of the device to which $ASSIGN is to assign a channel. The devnam argument is the address of a
character string descriptor pointing to the network pseudodevice name string (either TCPIP$DEVICE: or
SYS$NET:).

chan

OpenVMS usage: channel
type: word (unsigned)
access: write only
mechanism: (Alpha and I64) by 32- or 64-bit reference

(VAX) by 32-bit reference

Number of the channel that is assigned. The chan argument is the address of a word into which
$ASSIGN writes the channel number.

acmode

OpenVMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the channel. I/O operations on the channel can be performed only
from equal or more privileged access modes. The $PSLDEF macro defines the following symbols for the
four access modes:

Symbol Access Mode Numeric Value

PSL$C_KERNEL Kernel 0
PSL$C_EXEC Executive 1
PSL$C_SUPER Supervisor 2

237

Chapter 6. OpenVMS System Services Reference

Symbol Access Mode Numeric Value

PSL$C_USER User 3

mbxnam

OpenVMS usage: device_name
type: character-coded text string
access: read only
mechanism: (Alpha and I64) by 32-bit or 64-bit descriptor-fixed-length string descriptor

(VAX) by 32-bit descriptor-fixed-length string descriptor

This argument is not used.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

An optional device-specific argument. The flags argument is a longword bit mask. For more information
about the applicability of the flags argument for a particular device, refer to the OpenVMS I/O User's
Reference Manual.

Description
The $ASSIGN system service establishes a path to a device but does not check whether the calling
process has the capability to do I/O operations to the device. The device drivers may apply privilege and
protection restrictions. The calling process must have NETMBX privilege to assign a channel.

System dynamic memory is required for the target device, and the I/O byte limit quota from the process
buffer is used.

When a channel is assigned to the TCPIP$DEVICE: network pseudodevice, the network software creates
a new device called BGn, where n is a unique unit number. The corresponding channel number is used in
any subsequent operation requests for that device.

When the auxiliary server creates a process for a service with the LISTEN flag set, the server creates
a device socket. In order for your application to receive the device socket, assign a channel to SYS
$NET, which is the logical name of a network pseudodevice, and perform an appropriate $QIO(IO
$_SETMODE) operation.

Channels remain assigned either until they are explicitly deassigned with the Deassign I/O Channel
($DASSGN) service or, if they are user-mode channels, until the image that assigned the channel exits.

Condition Values Returned
SS$_NORMAL

The service completed successfully.

238

Chapter 6. OpenVMS System Services Reference

SS$_ACCVIO

The caller cannot read the device string or string descriptor, or the caller cannot write the channel
number.

SS$_DEVALLOC

The device is allocated to another process.

SS$_DEVLSTFULL

The system maximum number of BG: device units has been reached.

SS$_EXQUOTA

The process has exceeded its buffered I/O byte limit (BIOLM) quota.

SS$_IVDEVNAM

No device name was specified, the logical name translation failed, or the device name string contains
invalid characters.

SS$_IVLOGNAM

The device name string has a length of zero or has more than 63 characters.

SS$_NOIOCHAN

No I/O channel is available for assignment.

SS$_NOPRIV

The specified channel is not assigned or was assigned from a more privileged access mode.

SS$_NOSUCHDEV

The specified device does not exist.

Cancel I/O on Channel
Cancel I/O on Channel — Cancels all pending I/O requests on a specified channel.

Related Functions
The equivalent Sockets API function is close().

Format
SYS$CANCEL chan

C Prototype
int sys$cancel(unsigned short int chan);

Returns
OpenVMS usage: cond_value

239

Chapter 6. OpenVMS System Services Reference

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a condition value in R0.
Condition values that can be returned by this service are listed under Condition Values Returned.

Arguments

chan

OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

I/O channel on which I/O is to be canceled. The chan argument is a word containing the channel
number.

Description

To cancel I/O on a channel, the access mode of the calling process must be equal to or more privileged
than the access mode of the process that made the original channel assignment.

The $CANCEL service requires system dynamic memory and uses the process's buffered I/O limit
(BIOLM) quota.

When a request currently in progress is canceled, the driver is notified immediately. Actual cancellation
may or may not occur immediately, depending on the logical state of the driver. When cancellation does
occur, the action taken for I/O in progress is similar to that taken for queued requests. For example:

● The specified event flag is set.

● The first word of the I/O status block, if specified, is set to SS$_CANCEL if the I/O request is
queued, or to SS$_ABORT if the I/O operation is in progress.

● If the asynchronous system trap (AST) is specified, it is queued.

For proper synchronization between this service and the actual canceling of I/O requests to take place,
the issuing process must wait for the I/O process to complete normally. Note that the I/O has been
canceled. Outstanding I/O requests are canceled automatically at image exit.

Condition Values Returned

SS$_NORMAL

The service completed successfully.

SS$_ABORT

A physical line went down during a network connect operation.

240

Chapter 6. OpenVMS System Services Reference

SS$_CANCEL

The I/O operation was canceled by executing a $CANCEL system service.

SS$_EXQUOTA

The process has exceeded its buffered I/O limit (BIOLM) quota.

SS$_INSFMEM

Insufficient system dynamic memory to cancel the I/O.

SS$_IVCHAN

An invalid channel was specified (that is, a channel number of 0 or a number larger than the number
of channels available).

SS$_NOPRIV

The specified channel is not assigned or was assigned from a more privileged access mode.

Deassign I/O Channel
Deassign I/O Channel — Deassigns (releases) an I/O channel previously acquired using the Assign I/O
Channel ($ASSIGN) service.

Related Functions
The equivalent Sockets API function is close().

Format
SYS$DASSGN chan

C Prototype
int sys$dassgn(unsigned short int chan);

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a condition value in R0.
Condition values that can be returned by this service are listed under Condition Values Returned.

Arguments
chan

OpenVMS usage: channel

241

Chapter 6. OpenVMS System Services Reference

type: word (unsigned)
access: read only
mechanism: by value

Number of the I/O channel to be deassigned. The chan argument is a word containing this number.

Description

After all communication is completed, use the $DASSGN system service to free an I/O channel. A
$DASSGN operation executed on a channel associated with a network pseudodevice does the following:

● Ends all pending operations to send or receive data at $QIO level ($CANCEL system service).

● Clears the port associated with the channel. When executing the $DASSGN system service for TCP
sockets, the socket remains until the connection is closed on both the local and remote sides.

● Ends all communications with the network pseudodevice that the I/O channel identifies.

● Frees the channel associated with the network pseudodevice. An I/O channel can be deassigned
only from an access mode equal to or more privileged than the access mode from which the original
channel assignment was made.

I/O channels assigned from user mode are automatically deassigned at image exit.

Note

Even after a $DASSGN has been issued, a TCP socket may remain until the TCP close timeout interval
expires. The default and maximum timeout interval is either 10 minutes if the peer host is not responding
or 30 seconds after acknowledging the socket close. Although the TCP socket is open, you cannot make
a reference to that socket after issuing a $DASSGN.

Condition Values Returned

SS$_NORMAL

The service completed successfully.

SS$_IVCHAN

An invalid channel number was specified (that is, a channel number of zero or a number larger than
the number of channels available).

SS$_NOPRIV

The specified channel is not assigned or is assigned from a more privileged access mode.

Queue I/O Request
Queue I/O Request — Queues an I/O request to a channel associated with a network pseudodevice. The
$QIO service is completed asynchronously; that is, it returns to the caller immediately after queuing
the I/O request, without waiting for the I/O operation to be completed. For synchronous completion,

242

Chapter 6. OpenVMS System Services Reference

use the Queue I/O Request and Wait ($QIOW) service. The $QIOW service is identical to the $QIO
service, except the $QIOW returns to the caller after the I/O operation has completed. On Alpha and I64
systems, this service accepts 64-bit addresses.

Format
SYS$QIO [efn],chan,func, [iosb],[astadr],[astprm], [p1],[p2],[p3],[p4],
 [p5],[p6]

C Prototype
int sys$qio(unsigned int efn, unsigned short int chan, unsigned int func,
 struct _iosb *iosb, void (*astadr)(__unknown_params), __int64 astprm, void
 *p1, __int64 p2, __int64 p3, __int64 p4, __int64 p5, __int64 p6);

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return (by immediate value) a condition value in R0.
Condition values that can be returned by this service are listed under Condition Values Returned.

Arguments
efn

OpenVMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Event flag that $QIO sets when the I/O operation completes. The efn argument is a longword value
containing the number of the event flag; however, $QIO uses only the low-order byte.

If efn is not specified, event flag 0 is set.

The specified event flag is set if the service terminates without queuing an I/O request.

chan

OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

I/O channel that is assigned to the device to which the request is directed. The chan argument is a word
value containing the number of the I/O channel.

243

Chapter 6. OpenVMS System Services Reference

func

OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by value

Function codes and function modifiers specifying the operation to be performed. The func argument is a
longword containing the function code.

For information about the network pseudodevice and TELNET device function codes and modifiers, see
Section 6.2, "Network Pseudodevice Driver I/O Functions" and Section 6.4, "TELNET Port Driver I/O
Function Codes".

iosb

OpenVMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: (Alpha and I64) by 32-bit reference or 64-bit reference

(VAX) by 32-bit reference

I/O status block to receive the final completion status of the I/O operation. The iosb is the address of
the quadword I/O status block. See Figure 5.1, "I/O Status Block for a Successful READ or WRITE
Operation" for a description of the general structure of the I/O status block.

When the $QIO begins executing, it clears the event flag. The $QIO also clears the quadword I/O status
block if the iosb argument is specified.

Although the iosb argument is optional, VSI strongly recommends that you specify it, for the following
reasons:

● If you are using an event flag to signal the completion of the service, you can test the I/O status
block for a condition value to be sure that the event flag was not set by an event other than service
completion.

● If you are using the $SYNCH service to synchronize completion of the service, the I/O status block
is a required argument for $SYNCH.

● The condition value returned in R0 and the condition value returned in the I/O status block provide
information about different aspects of the call to the $QIO service. The condition value returned in
R0 provides information about the success or failure of the service call itself; the condition values
returned in the I/O status block give information on the success or failure of the service operation.
Therefore, to determine the success or failure of the $QIO call, check the condition values returned
in both the R0 and the I/O status block.

astadr

OpenVMS usage: ast_procedure
type: procedure value

244

Chapter 6. OpenVMS System Services Reference

access: call without stack unwinding
mechanism: (Alpha and I64) by 32- or 64-bit reference

(VAX) by 32-bit reference

AST service routine to be executed when the I/O completes. The astadr argument is the address of the
AST routine.

The AST routine executes at the access mode of the caller of $QIO.

astprm

OpenVMS usage: user_arg
type: quadword unsigned (Alpha and I64); longword unsigned (VAX)
access: read only
mechanism: (Alpha and I64) by 32- or 64-bit value

(VAX) by 32-bit value

AST parameter to be passed to the AST service routine. On Alpha and I64 systems, the astprm
argument is a quadword value containing the AST parameter. On VAX systems, the astprm argument is
a longword value containing the AST parameter.

p1 to p6

OpenVMS usage: varying_arg
type: quadword unsigned (Alpha and I64); longword unsigned (VAX)
access: read only
mechanism: (Alpha and I64) by 32- or 64-bit reference or by 64-bit value depending on the I/O

function

(VAX) by 32-bit reference or by 32-bit value depending on the I/O function

Optional device- and function-specific I/O request arguments. The parameter values contained in these
arguments vary according to the function for which they are used. See Table 6.2, "Network Pseudodevice
Driver I/O Functions" for descriptions of the network pseudodevice driver I/O function codes; see Table
6.7, "List Codes for the p5 Item" through Table 6.10, "Service Type Codes" for related TELNET device
driver I/O function codes.

Description
The Queue I/O Request service operates only on assigned I/O channels and only from access modes that
are equal to or more privileged than the access mode from which the original channel assignment was
made.

For TCP/IP Services, $QIO uses the following system resources:

● The process's AST limit (ASTLM) quota, if an AST service routine is specified.

● System dynamic memory, which is required to queue the I/O request. System dynamic memory
requirements are protocol specific.

245

Chapter 6. OpenVMS System Services Reference

● Additional memory, on a device-dependent basis.

For $QIO, completion can be synchronized as follows:

● By specifying the astadr argument to have an AST routine execute when the I/O is completed.

● By calling the $SYNCH synchronize service to await completion of the I/O operation. (If you want
your I/O operation to complete synchronously, use the $QIOW system service instead.)

Condition Values Returned
Each function used with $QIO has its own error codes. See the error codes listed under the individual
descriptions of the I/O function code in the remainder of this chapter.

6.2. Network Pseudodevice Driver I/O
Functions
The network pseudodevice allows physical, logical, and virtual I/O functions. The physical and logical
I/O functions are used only with the IP layer. Table 6.2, "Network Pseudodevice Driver I/O Functions"
lists the basic I/O functions and their modifiers. The sections that follow describe in greater detail the
operation of these I/O functions.

Table 6.2. Network Pseudodevice Driver I/O Functions

Function Code and Arguments Function Modifier Description

IO$_ACCESS p3,p4 IO$M_ACCEPT

IO$M_EXTEND

IO$M_NOW

Opens a connection.

IO$_ACPCONTROL p1, p2, p3,
p4

 Performs an ACP (ancillary
control process) operation.

IO$_DEACCESS p4 IO$M_NOW

IO$M_SHUTDOWN

Aborts or closes a connection.

IO$_READVBLK
p1,p2,p3,p4,p6

IO$M_EXTEND

IO$M_INTERRUPT

Reads a virtual block.

 IO$M_LOCKBUF

IO$M_PURGE

Controls the buffer operations.

IO$_SENSEMODE p2, p3,p4,p6 Reads the network pseudodevice
characteristics.

IO$_SENSECHAR p2, p3,p4,p6 Reads the network pseudodevice
characteristics.

IO$_SETMODE p1, p2,
p3,p4,p5

IO$M_OUTBAND

IO$M_READATTN

IO$M_WRTATTN

Sets the network pseudodevice
characteristics for subsequent
operations.

246

Chapter 6. OpenVMS System Services Reference

Function Code and Arguments Function Modifier Description

IO$_SETCHAR p1, p2,
p3,p4,p5

IO$M_OUTBAND

IO$M_READATTN

IO$M_WRTEATTN

Sets the network pseudodevice
characteristics for subsequent
operations.

IO$_WRITEVBLK
p1,p2,p3,p4,p5

IO$M_INTERRUPT Writes a virtual block.

Table 5.2, "Network Symbol Definition Files" lists the file names of the symbol definition files. These
files specify $QIO arguments (p1,p2,...p6) for applications written in the corresponding programming
languages. You must invoke the symbol definition by using the appropriate statement in your application.

6.3. Network Pseudodevice Driver I/O Function
Codes

IO$_ACCESS
IO$_ACCESS — When using a connection-oriented protocol, such as TCP, the IO$_ACCESS function
initiates a connection and specifies a remote port number and IP address. When using a connectionless
protocol, such as UDP, the IO$_ACCESS function sets the remote port number and IP address. For
TCP, a connection request times out at a specified interval (75 seconds is the default). This interval
can be changed by setting the inet subsystem parameter tcp_keepinit. The program can also set
a specific timeout interval for a socket that it has created, as described in Table A.2, "TCP Protocol
Options". If a connection fails, you must deallocate the socket and then create a new socket before trying
to reconnect.

Related Functions
The equivalent Sockets API function is connect().

Arguments
p3

OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_2 descriptor

The remote port number and IP address of the host to connect. The p3 argument is the address of an
item_list_2 descriptor that points to the socket address structure containing the remote port number
and IP address.

Function Modifiers
IO$M_NOW

Regardless of a $QIO or $QIOW, if the system detects a condition that would cause the operation to
block, the system completes the I/O operation and returns the SS$_SUSPENDED status code.

247

Chapter 6. OpenVMS System Services Reference

Condition Values Returned
SS$_NORMAL

The service completed successfully.

SS$_BADPARAM

Programming error that occurred for one of the following reasons:

● $QIO system service was specified without a socket.

● An IO$_ACCESS function was specified without the address of a remote socket name (p3 was
null).

SS$_BUGCHECK

Inconsistent state. Report the problem to your VSI support representative.

SS$_CANCEL

The I/O operation was canceled by a $CANCEL system service.

SS$_CONNECFAIL

The connection to a network object timed out or failed.

SS$_DEVINTACT

The network driver was not started.

SS$_DEVNOTMOUNT

The network driver is loaded, but the INETACP is not currently available for use.

SS$_DUPLNAM

A network configuration error. No ports were available for new connections.

SS$_EXQUOTA

The process has exceeded a process quota.

SS$_FILALRACC

The specified socket name is already in use by one of the following:

● On a raw socket, the remote IP address was already specified on a previous IO$_ACCESS call.

● On a datagram, the remote IP address was already specified on a previous IO$_ACCESS call.

● On a stream socket, the IO$_ACCESS function targeted a stream socket that was already
connected.

SS$_ILLCNTRFUNC

Illegal function.

248

Chapter 6. OpenVMS System Services Reference

SS$_INSFMEM

Insufficient system dynamic memory to complete the service.

SS$_IVADDR

The specified IP address was not found, or an invalid port number and IP address combination was
specified with the IO$_ACCESS function. Port 0 is not allowed with the IO$_ACCESS function.

SS$_IVBUFLEN

The size of the socket name structure specified with the IO$_ACCESS function was invalid.

SS$_LINKABORT

The remote socket closed the connection.

SS$_NOLICENSE

The TCP/IP Services license is not present.

SS$_PROTOCOL

A network protocol error occurred. The address family specified in the socket address structure is
not supported.

SS$_REJECT

The network connection is rejected for one of the following reasons:

● An attempt was made to connect to a remote socket that is already connected.

● An error was encountered while establishing the connection

● The peer socket refused the connection request or is closing the connection.

SS$_SHUT

The local or remote node is no longer accepting connections.

SS$_SUSPENDED

The system detected a condition that might cause the operation to block.

SS$_TIMEOUT

A TCP connection timed out before the connection could be established.

SS$_UNREACHABLE

The remote node is currently unreachable.

IO$_ACCESS|IO$M_ACCEPT
IO$_ACCESS|IO$M_ACCEPT — This function is used with a connection-based protocol, such as TCP,
to accept a new connection on a passive socket. This function completes the first connection on the
queue of pending connections.

249

Chapter 6. OpenVMS System Services Reference

Related Functions
The equivalent Sockets API function is accept().

Arguments
p3

OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_3 descriptor

The remote port number and IP address of a new connection. The p3 argument is the address of an
item_list_3 descriptor that points to the socket address structure into which the remote port
number and IP address of the new connection is written.

p4

OpenVMS usage: channel
type: word (unsigned)
access: write only
mechanism: by reference

The I/O channel number assigned to a new connection. The p4 argument is the address of a word into
which the new connection's channel number is written.

Function Modifiers
IO$M_EXTEND

Allows the usage of BSD Version 4.4 formatted socket address structures. Use this modifier to
operate in the IPv6 environment.

IO$M_NOW

Regardless of a $QIO or $QIOW, if the system detects a condition that would cause the operation to
block, the system completes the I/O operation and returns the SS$_SUSPENDED status code.

Condition Values Returned
SS$_NORMAL

The service completed successfully.

SS$_BADPARAM

Programming error that occurred for one of the following reasons:

● $QIO system service was specified without a socket.

● A IO$_ACCESS|IO$M_ACCEPT function was specified without the address of the channel for
the new connection (p4 was null or invalid).

250

Chapter 6. OpenVMS System Services Reference

SS$_BUGCHECK

Inconsistent state. Report the problem to your VSI support representative.

SS$_CANCEL

The I/O operation was canceled by a $CANCEL system service.

SS$_DEVINTACT

The network driver was not started.

SS$_DEVNOTMOUNT

The network driver is loaded, but the INETACP is not currently available for use.

SS$_EXQUOTA

The process has exceeded a process quota.

SS$_FILALRACC

The specified socket name is already in use by one of the following:

● On a raw socket, the remote IP address was already specified on a previous IO$_ACCESS call.

● On a datagram, the remote IP address was already specified on a previous IO$_ACCESS call.

● On a stream socket, the IO$_ACCESS function targeted a stream socket that was already
connected.

SS$_ILLCNTRFUNC

Illegal function.

SS$_INSFMEM

Insufficient system dynamic memory to complete the service.

SS$_IVADDR

The specified IP address was not found, or an invalid port number and IP address combination was
specified with the IO$_ACCESS function. Port 0 is not allowed with the IO$_ACCESS function.

SS$_IVBUFLEN

The size of the socket name structure specified with the IO$_ACCESS function was invalid.

SS$_LINKABORT

The remote socket closed the connection.

SS$_NOLICENSE

The TCP/IP Services license is not present.

251

Chapter 6. OpenVMS System Services Reference

SS$_PROTOCOL

A network protocol error occurred. The address family specified in the socket address structure is
not supported.

The network connection is rejected for one of the following reasons:

● An attempt was made to connect to a remote socket that is already connected.

● An error was encountered while establishing the connection

● The peer socket refused the connection request or is closing the connection.)

SS$_SHUT

The local or remote node is no longer accepting connections.

SS$_SUSPENDED

The system detected a condition that might cause the operation to block.

SS$_TIMEOUT

A TCP connection timed out before the connection could be established.

SS$_UNREACHABLE

The remote node is currently unreachable.

IO$_ACPCONTROL
IO$_ACPCONTROL — The IO$_ACPCONTROL function accesses the network ACP to retrieve
information from the host and the network database files.

Related Functions
The equivalent Sockets API functions are gethostbyaddr(), gethostbyname(),
getnetbyaddr(), and getnetbyname().

Arguments
p1

OpenVMS usage: subfunction_code
type: longword (unsigned)
access: read only
mechanism: by descriptor-fixed-length descriptor

A longword identifying the network ACP operation to perform. The p1 argument is the address of a
descriptor pointing to this longword.

To specify the network ACP operation to perform, select a subfunction code from Table 6.3,
"Subfunction Codes" and a call code from Table 6.4, "Call Codes".

252

Chapter 6. OpenVMS System Services Reference

Table 6.3, "Subfunction Codes" defines subfunction codes for network ACP operations.

Table 6.3. Subfunction Codes

Subfunction Code Description

INETACP_FUNC$C_GETHOSTBYADDR Get the host name of the specified IP address from
the hosts database.1

INETACP_FUNC$C_GETHOSTBYNAME Get the IP address of the specified host from the
hosts database.1

INETACP_FUNC$C_GETNETBYADDR Get the network name of the specified IP address
from the network database.

INETACP_FUNC$C_GETNETBYNAME Get the IP address of the specified network from
the network database.

1You can limit the maximum amount of time spent obtaining host names and addresses by entering the command TCPIP SET
NAME_SERVICE/TIMEOUT=1/RETRY=1

Table 6.4, "Call Codes" defines call codes for network ACP operations.

Table 6.4. Call Codes

Call Code Description

INETACP$C_ALIASES Returns the list of alias names associated with the
specified host or network from the internet hosts or
network database.

INETACP$C_TRANS Returns the IP address associated with the
specified host or network as a 32-bit value in
network byte order.

INETACPC$C_HOSTENT_OFFSET Returns full host information in a modified
hostent structure. In the modified structure,
pointers are replaced with offsets from the
beginning of the structure.

INETACP$C_NETENT_OFFSET Returns full network information in a modified
netent structure. In the modified structure,
pointers are replaced with offsets from the
beginning of the structure.

IO$_ACPCONTROL searches the local hosts database for the host's name. If a matching host name
is not found in the local hosts database, IO$_ACPCONTROL then searches the BIND database if the
BIND resolver is enabled.

p2

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Input string for the network ACP operation containing one of the following: host IP address, host name,
network IP address, or network name. The p2 argument is the address of a string descriptor pointing to
the input string. The input string must be in an area of memory that is capable of being read and written
to.

253

Chapter 6. OpenVMS System Services Reference

All IP addresses are specified in dotted-decimal notation.

p3

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the output buffer returned by IO$_ACPCONTROL. The p3 argument is the address
of a word in which the length of the output buffer is written.

p4

OpenVMS usage: buffer
type: vector byte (unsigned)
access: write only
mechanism: by descriptor-fixed-length descriptor

Buffer into which IO$_ACPCONTROL writes its output data. The p4 argument is the address of a
descriptor pointing to the output buffer.

The format of the data returned in the output buffer is dictated by the call code specified by the p1
argument.

● Strings returned by IO$_ACPCONTROL with a call code of INETACP$C_ALIASES consist of one
of the following: host IP address, host name, network IP address, or network name. All IP addresses
are formatted using dotted-decimal notation. Alias names are separated by a null character (0). The
length of the returned string includes all null characters that separate alias names.

● IP addresses returned by IO$_ACPCONTROL with a call code of INETACP$C_TRANS are 32-bit
values in network byte order.

● All hostent and netent structures returned by IO$_ACPCONTROL with a call code of
INETACP$C_HOSTENT_OFFSET or INETACP$C_NETENT_OFFSET are modified; pointers are
replaced with offsets from the beginning of the structure.

Condition Values Returned
SS$_NORMAL

The service completed successfully

SS$_ABORT

An error was detected while performing an ACP function.

SS$_BADPARAM

Programming or internal error. A bad parameter (name or address) was specified in the call.

SS$_BUFFEROVF

Programming error. There was not enough space for returning all alias names in the call.

254

Chapter 6. OpenVMS System Services Reference

SS$_ENDOFFILE

The information requested is not in the database.

SS$_ILLCNTRFUNC

Illegal function.

SS$_NOPRIV

The privilege level was insufficient for the execution of an ACP function.

SS$_RESULTOVF

The ACP overflowed the buffer in returning a parameter.

SS$_SHUT

The local or remote node is no longer accepting connections.

IO$_DEACCESS
IO$_DEACCESS — The IO$_DEACCESS function closes a connection and deletes a socket. Any
pending messages queued for transmission are sent before tearing down the connection. When used
with the IO$M_SHUTDOWN function modifier, the IO$_DEACCESS function shuts down all or
part of a bidirectional connection on a socket. Use the p4 argument to specify the disposition of
pending I/O operations on the socket. You can specify a wait time or time-to-linger socket parameter
(TCPIP$C_LINGER option) for transmission completion before disconnecting the connection. Use
the IO$_SETMODE function to set and clear the TCPIP$C_LINGER option. If you set the TCPIP
$C_LINGER option, a $QIO call that uses the IO$_DEACCESS function allows data queued to the
socket to arrive at the destination. The system is blocked until data arrives at the remote socket. The
socket data structure remains open for the duration of the TCP idle time interval. If you do not set the
TCPIP$C_LINGER option (option is set to 0), a $QIO call that uses the IO$_DEACCESS function
discards any data queued to the socket and deallocates the socket data structure. For compatibility with
UNIX, TCP/IP Services forces a time to linger of 2 minutes on TCP stream sockets.

Related Functions
The equivalent Sockets API functions are close() and shutdown().

Arguments
p4

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword of shutdown flags to specify the disposition of pending I/O operations on the socket. The
p4 argument is used only with the IO$M_SHUTDOWN function modifier. The following table lists
available shutdown flags.

255

Chapter 6. OpenVMS System Services Reference

Shutdown Flag Description

TCPIP$C_DSC_RCV Discards messages from the receive queue and
disallows further receiving. Pending messages in
the receive queue for this connection are discarded.

TCPIP$C_DSC_SND Discards messages from the send queue and
disallows sending new messages. Pending messages
in the transmit queue for this connection are
discarded.

TCPIP$C_DSC_ALL Discards all messages and disallows both sending
and receiving. All pending messages are discarded.

Specifying this flag has the same effect as issuing a
$CANCEL QIO followed by an IO$_DEACCESS
QIO without specifying any flags.

Function Modifiers
IO$M_SHUTDOWN

Causes all or part of a full-duplex connection on a socket to be shut down.

IO$M_NOW

Regardless of a $QIO or $QIOW, if the system detects a condition that would cause the operation to
block, the system completes the I/O operation and returns the SS$_SUSPENDED status code.

Condition Values Returned
SS$_NORMAL

The service completed successfully.

SS$_BADPARAM

The IO$_DEACCESS operation failed to specify a socket.

SS$_CANCEL

The I/O operation was canceled by a $CANCEL system service.

SS$_DEVINTACT

The network driver was not started.

SS$_DEVNOTMOUNT

The network driver is loaded, but the INETACP is not currently available for use.

SS$_NOLINKS

The specified socket was not connected.

SS$_SHUT

The local or remote node is no longer accepting connections.

256

Chapter 6. OpenVMS System Services Reference

SS$_SUSPENDED

The system detected a condition that might cause the operation to block.

IO$_READVBLK
IO$_READVBLK — The IO$_READVBLK function transfers data received from an internet host to
the specified user buffers. Use both p1 and p2 arguments to specify a single user buffer. Use the p6
argument to specify multiple buffers. For connection-oriented protocols, such as TCP, data is buffered
in system space as a stream of bytes. The IO$_READVBLK function completes when one of the
following occurs: there is no more data buffered in system space for this socket; there is no more
available space in the user buffer. Data that is buffered in system space but did not fit in the user buffer
is available to the user in subsequent $QIOs. For connectionless protocols, datagram and raw socket data
is buffered in system space as a chain of records. The user buffer specified with a IO$_READVBLK
function is filled with data that is buffered in one record. Each IO$_READVBLK reads data from one
record. The IO$_READVBLK function completes when one of the following occurs: all data from
a record is transferred to the user buffer; there is no more available space in the user buffer, any data
remaining in the current record that did not fit in the user buffer is discarded, a subsequent $QIO reads
data from the next record buffered in system space. Use the TCP/IP management command SHOW
DEVICE_SOCKET/FULL to display counters related to read operations.

Related Functions

The equivalent Sockets API functions are read(), recv(), recvfrom(), and recvmsg().

Arguments

p1

OpenVMS usage: buffer
type: vector byte (unsigned)
access: read only
mechanism: (Alpha and I64) by 64-bit reference

The address of the buffer to receive the incoming data. The length of this buffer is specified by the p2
argument.

p2

OpenVMS usage: buffer_length
type:
access: quadword unsigned (Alpha and I64); longword unsigned (VAX)
mechanism: read only
OpenVMS usage (Alpha and I64) by 64-bit value

(VAX) by 32-bit value

The length (in bytes) of the buffer available to hold the incoming data. The address of this buffer is
specified by the p1 argument.

257

Chapter 6. OpenVMS System Services Reference

p3

OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_3 descriptor

The remote port number and IP address of the source of the datagram or raw IP message (not TCP). The
p3 argument is the address of an item_list_3 descriptor that points to the socket address structure
into which the remote port number and IP address of the message source is written.

p4

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword of flags to specify attributes for the read operations. Table 6.5, "Read Flags" lists the available
read flags.

Table 6.5. Read Flags

Read Flag Description

TCPIP$C_MSG_OOB Reads an out-of-band byte.
TCPIP$C_MSG_PEEK Reads a message but leaves the message in the

queue.
TCPIP$C_MSG_NBIO Does not block the I/O operation if the receive

queue is empty (similar to using IO$M_NOWAIT).
TCPIP$C_MSG_PURGE Flushes data from the queue (similar to using IO

$M_PURGE).
TCPIP$C_MSG_BLOCKALL Blocks the completion of the operation until the

buffer is filled completely or until the connection is
closed (similar to using IO$M_LOCKBUF).

p6

OpenVMS usage: buffer_list
type: vector byte (unsigned)
access: read only
mechanism: (Alpha and I64) by 32- or 64-bit descriptor-fixed-length descriptor

(VAX) by 32-bit descriptor-fixed-length descriptor

Output buffer list describing one or more buffers to hold the incoming data. The p6 argument is the 32-
or 64-bit address (on Alpha and I64 systems) or the 32-bit address (on VAX systems) of a descriptor
that points to a output buffer list. Buffers are filled in the order specified by the output buffer list. The
transfer-length value returned in the I/O status block is the total number of bytes transferred to all
buffers.

258

Chapter 6. OpenVMS System Services Reference

If you use the p1 and p2 arguments, do not use the p6 argument; they are mutually exclusive.

Function Modifiers
IO$_READVBLK

Specifies the format of the socket address structure to return when used with the p3 argument.

When specified, a BSD Version 4.4 formatted socket address structure is returned that identifies the
source of the received UDP datagram or raw IP message.

To operate in an IPv6 environment, you must set the IO$M_EXTEND modifier.

IO$M_INTERRUPT

Reads an out-of-band (OOB) message. This has the same effect as specifying the TCPIP
$C_MSG_OOB flag in the p4 argument.

On receiving an OOB character, TCP/IP stores the pointer in the received stream with the character
that precedes the OOB character.

A read operation with a user-buffer size larger than the size of the received stream up to the OOB
character completes and returns to the user the received stream up to, but not including, the OOB
character.

To determine whether the socket must issue more read $QIOs before getting all the characters
from the stream preceding an OOB character, poll the socket. To do this, issue a $QIO with
the $IO_SENSEMODE function, and the TCPIP$C_IOCTL subfunction that specifies the
SIOCATMARK command. The SIOCATMARK values are as follows:

● 0 = Issue more read $QIOs to read more data before reading the OOB.

● 1 = The next read $QIO will return the OOB character.

Polling a socket is particularly useful when the OOBINLINE socket option is set. When the
OOBINLINE is set, TCP/IP reads the OOB character with the characters in the stream (IO
$_READVBLK), but not before reading the preceding characters. Use this polling mechanism to
determine whether the first character in the user buffer on the next read is an OOB character.

On a socket without the OOBINLINE option set, a received OOB character will always be read by
issuing a $QIO with either the IO$_READVBLK|IO$M_INTERRUPT or IO$_READVBLK and
the TCPIP$C_MSG_OOB flag set. This can occur regardless of how many preceding characters in
the stream have been returned to the user.)

IO$M_LOCKBUF

Blocks the completion of the I/O operation until the user buffer is completely filled or until the
connection is closed. This is particularly useful when you want to minimize the number of $QIO
service calls issued to read a data stream of a set size. This function modifier supports only stream
protocols.

IO$M_NOWAIT

Regardless of a $QIO or $QIOW, if the system detects a condition that would cause the operation to
block, the system completes the I/O operation and returns the SS$_SUSPENDED status code.

259

Chapter 6. OpenVMS System Services Reference

IO$M_PURGE

Flushes data from the socket receive queue (discards data). If the user buffer is larger than the
amount of data in the queue, all data is flushed.

Condition Values Returned
SS$_NORMAL

The service completed successfully.

SS$_ABORT

Programming error, INET management error, or hardware error. The execution of the I/O was
aborted.

SS$_ACCVIO

Access to an invalid memory location or buffer occurred.

SS$_BADPARAM

One of the following methods was used to specify a $QIO function with an invalid parameter:

● An I/O function executed without specifying a device socket. First issue a $QIO with the IO
$_SETMODE function and the proper parameters to create the device socket.

● An IO$_READVBLK function that does not specify a correct buffer address (p1 or p6 is null).

● An IO$_READVBLK function specified an invalid vectored buffer (p6 is an invalid descriptor).

● The socket has the OOBINLINE option set, or there is no OOB character in the socket's OOB
queue because the character was either already read or never received. This condition happens
only if you use the IO$M_INTERRUPT modifier or set the TCPIP$C_MSG_OOB flag with IO
$_READVBLK.

SS$_CANCEL

The I/O operation was canceled by a $CANCEL system service.

SS$_DEVINTACT

The network driver was not started.

SS$_DEVNOTMOUNT

The network driver is loaded, but the INETACP is not currently available for use.

SS$_INSFMEM

INET management or programming error. There is not enough buffer space for allocation. The
INET software needs more buffer space. You should set a higher quota for the dynamic buffer space,
or shut down and restart TCP/IP Services with a larger static buffer space.

Programming error occurred for one of the following reasons:

● The size of the buffer for an I/O function is insufficient.

260

Chapter 6. OpenVMS System Services Reference

● An IO$_READVBLK specified a correct buffer address (p1 valid), but does not specify a buffer
length (p2 is null).)

SS$_LINKDISCON

A virtual circuit (TCP/IP) was closed at the initiative of the peer.

SS$_NOLINKS

Programming error. Read attempt on unconnected TCP socket.

SS$_SHUT

The network is being shut down.

SS$_SUSPENDED

The operation is blocked for one of the following reasons:

● No messages were received, so the receive operation cannot complete. The socket is marked as
nonblocking.

● The socket has the OOBINLINE option clear, and the OOB character has already been read.

SS$_TIMEOUT

This applies to a socket that has KEEPALIVE set. The connection was idle for longer than the
timeout interval (10 minutes is the default). For more information, see Table A.2, "TCP Protocol
Options".

SS$_UNREACHABLE

Communication status. The remote host or network is unreachable.

IO$_SENSEMODE/IO$_SENSECHAR
IO$_SENSEMODE/IO$_SENSECHAR — The IO$_SENSEMODE and IO$_SENSECHAR functions
return one or more parameters (characteristics) pertaining to the network driver. Socket names (local and
remote peer) are returned by using IO$_SENSEMODE's p3 and p4 arguments. Other parameters such
as socket and protocol options, are specified in an output parameter list using the IO$_SENSEMODE
p6 argument. IO$_SENSEMODE p3 and p4 arguments can be used with the p6 argument in a single
$QIO system service to return socket names as well as socket and protocol options. IO$_SENSEMODE
processes arguments in this order: p3, p4, p6. If IO$_SENSEMODE detects an error, the I/O status
block (IOSB) contains the error and argument address or the value that was at fault. Refer to individual
argument descriptions for details about specifying the type and format of output parameters.

Arguments
p3

OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_3 descriptor

261

Chapter 6. OpenVMS System Services Reference

The port number and IP address of the local name associated with the socket. The p3 argument is the
address of an item_list_3 descriptor that points to the socket address structure into which the local
name is written.

The equivalent Sockets API function is getsockname().

p4

OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_3 descriptor

The port number and IP address of the remote name associated with the socket's peer. The p4 argument
is the address of an item_list_3 descriptor that points to the socket address structure into which the
peer name is written.

The equivalent Sockets API function is getpeername().

p6

OpenVMS usage: output_parameter_list
type: vector byte (unsigned)
access: read only
mechanism: by item_list_2 descriptor

Output parameter list describing one or more parameters to return. The p6 argument is the address of an
item_list_2 descriptor that points to and identifies the type of output parameter list.

The equivalent Sockets API functions are getsockopt() and ioctl().

Function Modifiers
IO$M_EXTEND

Specifies the format of the socket address structure to return when used with the p3 or p4
arguments.

When specified, a BSD Version 4.4 formatted socket address structure is returned.

Specify the IO$M_EXTEND modifier to operate in an IPv6 environment.)

Condition Values Returned
SS$_NORMAL

The service completed successfully.

SS$_ACCVIO

The service cannot access a buffer specified by one or more arguments.

SS$_BADPARAM

Programming error occurred for one of the following reasons:

262

Chapter 6. OpenVMS System Services Reference

● $QIO system service was specified without a socket.

● Error occurred processing a socket or protocol option.

SS$_DEVINTACT

The network driver was not started.

SS$_DEVNOTMOUNT

The network driver is loaded, but the INETACP is not currently available for use.

SS$_ILLCNTRFUNC

Programming error. The operation is unsupported for one of the following reasons:

● An invalid IO$_SENSEMODE function for the interface was specified. The interface does not
have an IOCTL routine.

● An IO$_SENSEMODE function that requires a socket was specified, but the device did not have
one. Create a socket and then issue the function.

● An unsupported operation was performed on at least one of the following protocols: raw IP,
datagram, or stream sockets.

SS$_INSFMEM

Insufficient system dynamic memory to complete the service.

SS$_IVBUFLEN

The size of a socket option buffer specified with the IO$_SENSEMODE function was invalid.

SS$_NOSUCHDEV

Programming error or INET management error. An INET address is not in the Address Resolution
Protocol (ARP) table. An attempt to show or delete an ARP table entry failed.

SS$_NOLINKS

The specified socket was not connected.

SS$_NOOPER

Programming error. An attempt to get ARP information occurred without OPER privilege.

SS$_PROTOCOL

A network protocol error occurred. The address family specified in the socket address structure is
not supported.

SS$_SHUT

The local or remote node is no longer accepting connections.

SS$_UNREACHABLE

The remote node is currently unreachable.

263

Chapter 6. OpenVMS System Services Reference

IO$_SETMODE/IO$_SETCHAR
IO$_SETMODE/IO$_SETCHAR — The IO$_SETMODE and IO$_SETCHAR functions set one or
more parameters (characteristics) pertaining to the network driver. Sockets are created using the IO
$_SETMODE p1 argument. Names are assigned to sockets using the IO$_SETMODE p3 argument.
Active sockets are converted to passive sockets using the IO$_SETMODE p4 argument. Other
parameters, such as socket and protocol options, are specified in an input parameter list using the IO
$_SETMODE p5 argument. The IO$_SETMODE p1, p3, and p4 arguments can be used with the p5
argument in a single $QIO system service to set socket names as well as socket and protocol options. IO
$_SETMODE processes arguments in this order: p1, p3, p4, p5. If IO$_SETMODE detects an error, the
I/O status block (IOSB) contains the error and argument address or the value that was at fault. Refer to
individual argument descriptions for details about specifying the type and format of input parameters.

Arguments
p1

OpenVMS usage: socket_characteristics
type: longword (unsigned)
access: read only
mechanism: by reference

Longword specifying the protocol, socket type, and address family of a new socket. The p1 argument is
the address of the longword containing the socket characteristics.

The newly created socket is marked privileged if the image that creates a socket runs in a process that
has BYPASS, OPER, or SYSPRV privilege.

The following table shows protocol codes:

Protocol Description

TCPIP$C_TCP TCP/IP protocol
TCPIP$C_UDP UDP/IP protocol
TCPIP$C_RAW_IP IP protocol

Table 6.6, "Socket Types" lists the socket types.

Table 6.6. Socket Types

Socket Type Description

TCPIP$C_STREAM Permits bidirectional, reliable, sequenced, and
unduplicated data flow without record boundaries.

TCPIP$C_DGRAM Permits bidirectional data flow with record
boundaries. No provisions for sequencing,
reliability, or unduplicated messages.

TCPIP$C_RAW Permits access to the IP layer; used to develop new
protocols that are layered upon the IP layer.

The following table shows address family codes:

264

Chapter 6. OpenVMS System Services Reference

Address Family Description

TCPIP$C_AF_INET IPv4 Internet domain (default).
TCPIP$C_AF_INET6 IPv6 Internet domain.
TCPIP$C_AUXS Accept hand-off of a socket already created and

initialized by the auxiliary server.

The equivalent Sockets API function is socket().

p3

OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_2 descriptor

The local name (that is, port number and IP address) to assign to the socket. The p3 argument is the
address of an item_list_2 descriptor that points to the socket address structure containing the local
name.

The equivalent Sockets API function is bind().

p4

OpenVMS usage: connection_backlog
type: byte (unsigned)
access: read only
mechanism: by value

Maximum limit of outstanding connection requests for a socket that is connection oriented. If more
connection requests are received than are specified, the additional requests are ignored so that TCP
retries can succeed.

The equivalent Sockets API function is listen().

p5

OpenVMS usage: input_parameter_list
type: vector byte (unsigned)
access: read only
mechanism: by item_list_2 descriptor

Input parameter list describing one or more parameters to set. The p5 argument is the address of an
item_list_2 descriptor that points to and identifies the type of input parameter list.

The equivalent Sockets API functions are setsockopt() and ioctl().

Condition Values Returned
SS$_NORMAL

The service completed successfully.

265

Chapter 6. OpenVMS System Services Reference

SS$_ACCVIO

The service cannot access a buffer specified by one or more arguments.

SS$_BADPARAM

Programming error that occurred for one of the following reasons:

● $QIO system service was specified without a socket.

● Error occurred processing a socket or protocol option.

SS$_DEVINTACT

The network driver was not started.

SS$_DEVNOTMOUNT

The network driver is loaded, but the INETACP is not currently available for use.

SS$_DUPLNAM

Programming error. The port being bound is already in use. An attempt to bind the socket to an
address and port failed.

SS$_FILALRACC

Programming error. The IP address is already in use. An attempt to bind the socket to an address
and port failed.

SS$_ILLCNTRFUNC

Programming error. An attempt to perform an IO$_SETMODE function required a socket, but the
device did not have one. Create a socket before issuing the function.

SS$_IVADDR

Programming error. The IP address you specified using the IO$_SETMODE function was not placed
into the system. This resulted in an invalid port number or IP address combination. The IP address
was invalid for one of the following reasons:

● An attempt was made to exceed the limit of allowable permanent entries in the ARP table.

● An attempt was made to bind a raw IP socket when there are no interfaces defined in the system.

● An attempt was made to bind a raw IP socket to a null Internet address.

SS$_INSFMEM

Insufficient system dynamic memory to complete the service.

SS$_IVBUFLEN

The size of a socket option buffer specified with the IO$_SETMODE function was invalid.

SS$_NOLICENSE

Programming or system management error. A TCP/IP Services license is not present.

266

Chapter 6. OpenVMS System Services Reference

SS$_NOOPER

Programming or INET management error. An attempt to was made to execute an I/O function that
needs the OPER privilege.

SS$_NOPRIV

Programming or INET management error. There are not enough privileges for the attempted
operation for one of the following reasons:

● An attempt was made to broadcast an IP datagram on a process without SYSPRV, BYPASS, or
OPER privilege.

● An attempt was made to use a reserved port number lower than 1024.

● An attempt was made to access a process that requires SYSPRV or BYPASS privilege.

● An attempt was made to use raw IP on a privileged socket that requires the SYSPRV or
BYPASS privilege.

SS$_NOSUCHDEV

Programming error or INET management error. An attempt was made to show or delete an ARP
table entry failed because the IP address is not found.

SS$_NOSUCHNODE

Programming error or INET management error. An attempt was made to delete a route from the
routing table failed because the entry was not found.

SS$_PROTOCOL

Programming error. A specified protocol or address family caused an error for one of the following
reasons:

● An invalid protocol type was specified at socket creation.

● An unsupported protocol was specified.

● The address family is unsupported for one of the following reasons:

• An unsupported address family was specified. Instead, specify the address family (TCPIP
$C_AF_INET, TCPIP$C_AF_INET6, or TCPIP$C_UNSPEC).

• An unsupported address family for the local IP address was specified. Instead, specify the
address family (TCPIP$C_AF_INET or TCPIP$C_AF_INET6).

• An unsupported address family for the IP address of the routing module was specified.
Instead, specify the address family (TCPIP$C_AF_INET or TCPIP$C_AF_INET6).

SS$_SHUT

The local or remote node is no longer accepting connections.

IO$_SETMODE|IO$M_OUTBAND
IO$_SETMODE|IO$M_OUTBAND — The IO$_SETMODE|IO$M_OUTBAND function/modifier
combination requests that the asynchronous system trap (AST) for an out-of-band (OOB) character

267

Chapter 6. OpenVMS System Services Reference

be delivered to the requesting process. This is to be done only when an OOB character is received on
the socket and there is no waiting read request. The socket must be a TCP (stream) socket. The Enable
OOB character AST function allows an Attention AST to be delivered to the requesting process only
once. After the AST occurs, the function must explicitly reenable AST delivery before a new AST can be
delivered. This function is subject to AST quotas.

Arguments
p1

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

To enable the AST, the p1 argument is the address of the OOB character AST routine. To disable the
AST, p1 equals 0.

p2

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be delivered to the AST routine specified by the p1 argument.

p3

OpenVMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to deliver the AST.

Condition Values Returned
SS$_NORMAL

The service completed successfully.

SS$_ABORT

Programming, INET management, or hardware error.

SS$_ACCVIO

Programming error. An attempt to access an invalid memory location or buffer occurred.

Programming error. A $QIO service with an invalid parameter occurred for one of the following
reasons:

268

Chapter 6. OpenVMS System Services Reference

● An attempt was made to execute an IO$_SETMODE function (all functions except socket
creation) without specifying a device socket. Instead, create a device socket by issuing a $QIO
with the IO$_SETMODE function and correct parameters.

● A socket option was specified incorrectly.)

SS$_DEVACTIVE

INET management error. An attempt to change the static parameters occurred. If new parameters
are needed, restart TCP/IP Services.

SS$_DEVINTACT

The network driver was not started.

SS$_DEVNOTMOUNT

The network driver is loaded but the INET_ACP is not currently available for use.

SS$_DUPLNAM

Programming error. An attempt to bind a port that is already in use occurred. An attempt to bind the
socket to an address and port failed.

SS$_FILALRACC

Programming error. IP address is already in use. An attempt to bind the socket to an address and
port failed.

SS$_INSFMEM

Programming or system management error: Not enough resources to allocate new socket.

Programming error. Operation is not supported because of one of the following reasons:

● Invalid IO$_SETMODE (IOCTL) function was used for the interface. The interface does not
have an IOCTL routine.

● An attempt was made to perform an IO$_SETMODE (IOCTL) function that required a socket,
but the device did not have one. Create a socket and issue the IOCTL function.)

SS$_IVADDR

The specified IP address was not found, or an invalid port number and IP address combination was
specified. Port 0 is not allowed with this function.

SS$_IVBUFLEN

Programming error. The socket option buffer has an invalid size.

SS$_NOLICENSE

Programming or system management error. The TCP/IP Services license is not present.

SS$_NOOPER

Programming or INET management error. An attempt was made to execute an I/O function that
needs the OPER privilege.

269

Chapter 6. OpenVMS System Services Reference

SS$_NOPRIV

Programming or INET management error. Not enough privileges for the attempted operation for one
of the following reasons:

● Broadcasting an IP datagram was denied because the process does not have SYSPRV, BYPASS,
or OPER privilege.

● An attempt was made to use a reserved port number lower than 1024.

● An operation accesses only processes that have SYSPRV or BYPASS privilege.

● Raw IP protocol can be used only on privileged sockets. The process must have a SYSPRV or
BYPASS privilege.

SS$_NOSUCHDEV

Programming error or INET management error. An INET address is not in the ARP table. An
attempt to show or delete an ARP table entry failed.

SS$_NOSUCHNODE

Programming or INET management error. An attempt to delete a route from the routing table failed
because a route entry was not found.

SS$_PROTOCOL

Programming error. The specified protocol type is not supported.

SS$_SHUT

The local or remote node is no longer accepting connections.

IO$_SETMODE|IO$M_READATTN
IO$_SETMODE|IO$M_READATTN — The IO$_SETMODE|IO$M_READATTN function/modifier
combination requests that an Attention AST be delivered to the requesting process when a data packet is
received on the socket and there is no waiting read request.

Description
The Enable Read Attention AST function enables an Attention AST to be delivered to the requesting
process only once. After the AST occurs, the function must explicitly reenable AST delivery before the
AST can occur again. The function is subject to AST quotas.

Consider the following when using IO$M_READATTN:

● There is a one-to-one correspondence between the number of times you enable an Attention AST
and the number of times the AST is delivered. For each enabled AST, one AST is delivered. If you
enable an Attention AST several times, several ASTs are delivered for one event when an event
occurs.

● If an out-of-band (OOB) Attention AST is enabled, the OOB AST is delivered, regardless of the
following:

270

Chapter 6. OpenVMS System Services Reference

• An enabled Read Attention AST

• The TCPIP$C_OOBINLINE socket option

• A READ $QIO waiting for completion on the socket

If the TCPIP$C_OOBINLINE option is set, then a waiting READ $QIO is completed and the OOB
character is returned in the data stream.

● If both an OOB AST and a Read Attention AST are enabled, only the OOB AST is delivered when
an OOB character is received.

● If a Read Attention AST is enabled and the TCPIP$C_OOBINLINE socket option is set, a waiting
READ $QIO completes and the OOB character is returned in the data stream.

● If a Read Attention AST is enabled and the TCPIP$C_OOBINLINE socket option is not set (clear),
the Read Attention AST is delivered when an OOB character is received, regardless of whether a
READ $QIO is waiting for completion. In this case, the OOB character is not returned in the data
stream. Therefore, if the OOB character is the only character received, the READ $QIO does not
complete.

Arguments
p1

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

To enable the AST, the p1 argument is the address of the Read Attention AST routine. To disable the
AST, set p1 to 0.

p2

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be delivered to the AST routine.

p3

OpenVMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode in which the AST is delivered.

271

Chapter 6. OpenVMS System Services Reference

Condition Values Returned
SS$_ABORT

Programming, INET management, or hardware error. The route entry already exists, so the attempt
to add a route entry using the IO$_SETMODE function failed.

SS$_ACCVIO

Programming error. An attempt to access an invalid memory location or buffer occurred.

SS$_BADPARAM

Programming error. The parameter specified for a $QIO function was invalid for one of the
following reasons:

● An attempt to execute the IO$_SETMODE functions without specifying a device socket
occurred. Instead, create a device socket by issuing a $QIO with the IO$_SETMODE function
and the proper parameters.

● A socket option was specified incorrectly.

SS$_DEVACTIVE

INET management error. An attempt to change a static parameter was unsuccessful. If you need new
parameters, restart TCP/IP Services.

SS$_DEVINTACT

The network driver was not started.

SS$_DEVNOTMOUNT

The network driver is loaded but the INET_ACP is not currently available for use.

SS$_DUPLNAM

Programming error. An attempt to bind a port already in use occurred so the operation to bind the
socket to the address and port failed.

SS$_FILALRACC

Programming error. An attempt to bind the socket to an address that is already in use occurred and
the operation failed.

SS$_INSFMEM

Programming or system management error. The system does not have enough resources to allocate
new socket.

SS$_ILLCNTRFUNC

Programming error. Operation is not supported.

● Invalid IO$_SETMODE (IOCTL) function was used for the interface. The interface does not
have an IOCTL routine.

272

Chapter 6. OpenVMS System Services Reference

● An attempt was made to perform an IO$_SETMODE (IOCTL) function that required a socket,
but the device did not have one. Create a socket and issue the IOCTL function.

SS$_IVADDR

Programming error. The specified IP address is not in the system, and an invalid port number or an
invalid IP address combination was specified with an IO$_SETMODE function (a bind).

● An attempt to bind the address failed because the IP address is not in the system, Port 0 and IP
address 0 are not allowed, or Port 0 is not allowed when using an IO$_ACCESS function.

● An attempt was made to make a permanent entry in the ARP table failed because of lack of
space. Too many permanent entries.

● An attempt was made to bind an IP socket (raw IP) when there are no interfaces defined in the
system.

● An attempt was made to bind an IP socket (raw IP) to a null INET address.

SS$_IVBUFLEN

Programming error. The socket option buffer has an invalid size.

SS$_NOLICENSE

Programming or system management error. The TCP/IP Services license is not present.

SS$_NOOPER

Programming or INET management error. An attempt was made to execute an I/O function that
needs the OPER privilege.

SS$_NOPRIV

Programming or INET management error. Not enough privileges for the attempted operation.

● Broadcasting an IP datagram was denied because the process does not have SYSPRV, BYPASS,
or OPER privilege.

● An attempt was made to use a reserved port number lower than 1024.

● An operation accesses only processes that have SYSPRV or BYPASS privilege.

● Raw IP protocol can be used only on privileged sockets. The process must have a SYSPRV or
BYPASS privilege.

SS$_NOSUCHDEV

Programming error or INET management error. An Internet address is not in the ARP table. An
attempt to show or delete an ARP table entry failed.

SS$_NOSUCHNODE

Programming error or INET management error. An attempt to delete a route from the routing table
failed because a route entry was not found.

273

Chapter 6. OpenVMS System Services Reference

SS$_PROTOCOL

Programming error. The specified protocol type is not supported.

SS$_SHUT

The local or remote node is no longer accepting connections.

IO$_SETMODE|IO$M_WRTATTN
IO$_SETMODE|IO$M_WRTATTN — The IO$_SETMODE|IO$M_WRTATTN function/modifier
combination (IO$M_WRTATTN is Enable Write Attention AST) requests that an Attention AST be
delivered to the requesting process when a data packet can be queued to the socket. For TCP sockets,
this occurs when space becomes available in the TCP transmit queue. The Enable Write Attention AST
function enables an Attention AST to be delivered to the requesting process only once. After the AST
occurs, the function must explicitly reenable AST delivery before the AST can occur again. The function
is subject to AST quotas. There is a one-to-one correspondence between the number of times you enable
an Attention AST and the number of times the AST is delivered. For example, for each enabled AST, one
AST is delivered. If you enable an Attention AST several times, several ASTs are delivered for one event
when the event occurs. You can use the TCP/IP management command SHOW DEVICE_SOCKET to
display information about the socket's characteristics, options, and state.

Arguments
p1

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

To enable the AST, the p1 argument is the address of the Write Attention AST routine. To disable the
AST, p1 is set to 0.

p2

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be delivered to the AST routine.

p3

OpenVMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode in which the AST is delivered.

274

Chapter 6. OpenVMS System Services Reference

Condition Values Returned
SS$_ABORT

Programming error, INET management error, or hardware error. The route specified with the IO
$_SETMODE function already exists. Therefore, the operation failed.

SS$_ACCVIO

Programming error. An attempt to access an invalid memory location or buffer occurred.

SS$_BADPARAM

Programming error. The parameter specified for the $QIO I/O function was invalid for one of the
following reasons:

● An attempt was made to execute the IO$_SETMODE functions without specifying a device
socket. Instead, create a device socket by issuing a $QIO with the IO$_SETMODE function and
the proper parameters.

● A socket option was specified incorrectly.

SS$_DEVACTIVE

INET management error. You attempted to change the static parameters. If you need new
parameters, restart TCP/IP Services.

SS$_DEVINTACT

The network driver was not started.

SS$_DEVNOTMOUNT

The network driver is loaded but the INET_ACP is not currently available for use.

SS$_DUPLNAM

Programming error. Port that is being bound is already in use. An attempt to bind the socket to an
address and port failed.

SS$_FILALRACC

Programming error. Because the IP address is already in use, an attempt to bind the socket to an
address and port failed.

SS$_INSFMEM

Programming or system management error. There are not enough resources to allocate a new socket.

SS$_ILLCNTRFUNC

Programming error. An attempt was made to execute an IO$_SETMODE function that required a
socket, but the device did not have one. Instead, create a socket and issue the function.

SS$_IVADDR

Programming error. An invalid port number and IP address combination was specified with the IO
$_SETMODE bind function. This caused the operation to fail for one of the following reasons:

275

Chapter 6. OpenVMS System Services Reference

● An illegal combination of Port 0 and IP address 0 was specified.

● An attempt was made to make a permanent entry in the ARP table and the operation failed
because of lack of space. There are too many permanent entries.

● An attempt was made to bind a raw IP socket when there were no interfaces defined in the
system.

● An attempt was made to bind a raw IP socket to a null IP address.

SS$_IVBUFLEN

Programming error. An invalid size was specified for the socket option buffer.

SS$_NOLICENSE

Programming or system management error. The TCP/IP Services license is not present.

SS$_NOOPER

Programming or INET management error. An attempt was made to execute an I/O function that
needs the OPER privilege.

SS$_NOPRIV

Programming or INET management error. The operation failed for one of the following reasons:

● An attempt was made to broadcast an IP datagram for a process without having SYSPRV,
BYPASS, or OPER privilege.

● An attempt was made to use a reserved port number lower than 1024.

● An attempt was made to access a process without having SYSPRV or BYPASS privilege.

● An attempt was made to use raw IP on a socket that is not a privileged socket. To do this, the
process must have SYSPRV or BYPASS privilege.

SS$_NOSUCHDEV

Programming error or INET management error. An attempt was made to show or delete an entry in
the ARP table. However, because the IP address was not in the ARP table, the operation failed.

SS$_NOSUCHNODE

Programming error or INET management error. An attempt was made to delete a route from the
routing information table (RIT). However, because the route was not found in the RIT, the operation
failed.

SS$_PROTOCOL

Programming error. The specified protocol is not supported.

SS$_SHUT

The local or remote node is no longer accepting connections.

276

Chapter 6. OpenVMS System Services Reference

IO$_WRITEVBLK
IO$_WRITEVBLK — The IO$_WRITEVBLK function transmits data from the specified user buffers
to an Internet host. Use both p1 and p2 arguments to specify a single user buffer. Use the p5 argument
to specify multiple buffers. For connection-oriented protocols, such as TCP, if the socket transmit
buffer is full, the IO$_WRITEVBLK function is blocked until the socket transmit buffer has room
for the user data. For connectionless-oriented protocols, such as UDP and raw IP, the user data is
transmitted in one datagram. If the user data is greater than the socket's transmit quota, the error code
(SS$_TOOMUCHDATA) is returned.

Related Functions
The equivalent Sockets API functions are send(), sendto(), sendmsg(), and write().

Arguments
p1

OpenVMS usage: buffer
type: vector byte (unsigned)
access: read only
mechanism: (Alpha and I64) by 32- or 64-bit reference

(VAX) by 32-bit reference

The address of the buffer containing the data to be transmitted. The length of this buffer is specified by
the p2 argument.

p2

OpenVMS usage: buffer_length
type: quadword unsigned (Alpha and I64); longword unsigned (VAX)
access: read only
mechanism: (Alpha and I64) by 64-bit value

(VAX) by 32-bit value

The length (in bytes) of the buffer containing data to be transmitted. The address of this buffer is
specified by the p1 argument.

p3

OpenVMS usage: socket_name
type: vector byte (unsigned)
access: read only
mechanism: by item_list_2 descriptor

The remote port number and IP address of the message destination. The p3 argument is the address
of an item_list_2 descriptor pointing to the socket address structure containing the remote port
number and IP address.

277

Chapter 6. OpenVMS System Services Reference

p4

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword of flags to specify attributes for this write operation. The following table lists the available
write flags:

Write Flag Description

TCPIP$C_MSG_OOB Writes an out-of-band (OOB) byte.
TCPIP$C_MSG_DONTROUTE Sends message directly without routing.
TCPIP$C_MSG_NBIO Completes the I/O operation and returns an error

if a condition arises that would cause the I/O
operation to be blocked. (Similar to using IO
$M_NOWAIT.)

p5

OpenVMS usage: buffer_list
type: vector byte (unsigned)
access: read only
mechanism: (Alpha and I64) by 32- or 64-bit descriptor-fixed-length descriptor

(VAX) by 32-bit descriptor-fixed-length descriptor

Input buffer list describing one or more buffers containing the data to be transmitted. The p5 argument
is the address of a descriptor pointing to a input buffer list. Buffers are transmitted in the order specified
by the input buffer list. The transfer-length value returned in the I/O status block is the total number of
bytes transferred from all buffers.

If you use the p1 and p2 arguments, do not use the p5 argument; they are mutually exclusive.

Function Modifiers
IO$M_EXTEND

Allows the use of extended modifiers with BSD Version 4.4. Valid only for datagram sockets (UDP
or raw IP); ignored for TCP.

IO$M_INTERRUPT

Sends an OOB message.

IO$M_NOWAIT

Regardless of a $QIO or $QIOW, if the system detects a condition that would cause the operation to
block, the system completes the I/O operation and returns the SS$_SUSPENDED status code. When
using this function modified, always check the message length in the IOSB to ensure that all data is
transferred. IO$_WRITEVBLK returns a success status even if data is only partially transferred.

278

Chapter 6. OpenVMS System Services Reference

Condition Values Returned
SS$_ABORT

Programming error, INET management error, or hardware error. The execution of the I/O was
aborted.

SS$_ACCVIO

Programming error. An attempt was made to access an invalid memory location or buffer.

SS$_BADPARAM

Programming error. An I/O operation was specified using an invalid parameter.

● An attempt was made to execute an IO$_WRITEVBLK function without specifying a device
socket. First create a device socket by issuing an IO$_SETMODE function and the proper
arguments.

● An attempt was made to issue an IO$_WRITEVBLK function that did not specify a correct
buffer address (p1 or p5 is null).

● An attempt was made to issue an IO$_WRITEVBLK that specifies an invalid vectored buffer
(p5 specifies an invalid address descriptor).

SS$_CANCEL

The I/O operation was canceled by the $CANCEL system service.

SS$_DEVINTACT

The network driver was not started.

SS$_DEVNOTMOUNT

The network driver is loaded, but the INETACP is not currently available for use.

SS$_EXQUOTA

Returned when process resource mode wait is disabled. There is no Internet request packet (IRP)
available for completing the request. Increase the buffered I/O quota.

SS$_FILALRACC

Programming error.

● IP address is already in use. An attempt was made to bind the socket to an address but the port
failed.

● IP protocol (raw socket). An attempt was made to specify a remote socket address with an IO
$_WRITEVBLK function, while an IP address was already specified with an IO$_ACCESS
function.

● UDP/IP protocol. An attempt was made to specify a remote socket address with an IO
$_WRITEVBLK function, while an IP address was already specified with the IO$_ACCESS
function.

279

Chapter 6. OpenVMS System Services Reference

SS$_ILLCNTRFUNC

Programming error. Unsupported operation on the protocol (UDP or TCP).

SS$_INSFMEM

Insufficient system dynamic memory to complete the operation.

SS$_IVADDR

Programming error. The specified IP address is not in the system, and an invalid port number or an
IP address combination was specified with an IO$_WRITEVBLK operation.

● An attempt to bind the socket failed because the INET address is not in the system, Port 0 and
IP address 0 are not allowed, or Port 0 is not allowed with an IO$_WRITEVBLK function.

● An attempt to get an interface IP address, broadcast mask, or network mask failed.

● A send request was made on a datagram-oriented protocol, but the destination address is
unknown or not specified.

SS$_IVBUFLEN

Programming error.

● The size of the buffer for an I/O function is insufficient.

● An attempt was made to issue an IO$_WRITEVBLK function that specifies a correct buffer
address (p1 valid) but does not specify a buffer length (p2 is null).

SS$_LINKDISCON

Notification. Connection completion return code. The virtual circuit (TCP/IP) was closed at the
initiative of the peer. The application must stop sending data and must either shut down or close the
socket.

SS$_PROTOCOL

Programming error. The address family of the remote address specified with an IO$_WRITEVBLK
function is not supported (UDP or TCP). The address family should be either the TCPIP
$C_AF_INET or the TCPIP$C_AF_INET6 address family.

SS$_NOLINKS

Programming error. The socket was not connected (TCP), or an INET port and address were not
specified with an IO$_ACCESS (UDP).

● An IO$_WRITEVBLK with no remote INET socket address was issued on a socket that was not
the object of an IO$_ACCESS function (raw IP).

● An IO$_WRITEVBLK with no remote INET socket address was issued on a socket that was not
the object of an IO$_ACCESS function (UDP).

● An attempt was made to disconnect a socket that is not connected, or an attempt was made to
issue an IO$_WRITEVBLK function on an unconnected socket (TCP).

280

Chapter 6. OpenVMS System Services Reference

SS$_SHUT

The local or remote node is no longer accepting connections.

SS$_SUSPENDED

The system detected a condition that might cause the operation to block.

SS$_TIMEOUT

Programming error, INET management error, or hardware error.

● A TCP/IP connection timed out after several unsuccessful retransmissions.

● On a TCP socket where KEEPALIVE is set, the connection was idle for longer than the timeout
interval. The default is 10 minutes.

SS$_TOOMUCHDATA

Programming or INET management error. The message size was too large.

● An IP packet that is broadcast cannot be fragmented.

● The Not Fragment IP flag was set and the IP datagram was too large to be sent without being
fragmented.

● Internal error. The length of the Ethernet datagram does not allow enough space for the
minimum IP header.

● The message to be sent on a UDP or raw IP socket is larger than the socket buffer high water
allows. For more information, see Appendix B, "IOCTL Requests".

● An attempt was made to send or receive more than 16 buffers specified with the p5 argument.

SS$_UNREACHABLE

Communication status. The remote host is currently unreachable.

This indicates a hardware error. The data link adapter detected an error and shut itself off. The TCP/
IP Services software is waiting for the adapter to come back on line.

6.4. TELNET Port Driver I/O Function Codes
The TELNET port driver (TNDRIVER) provides terminal session support for TCP streaming
connections using the RAW, NVT, RLOGIN, and TELNET protocols. Either a remote device or an
application can be present at the remote endpoint of the connection.

A user program can manage a TELNET connection with the standard OpenVMS $QIO system service
by using the IO$_TTY_PORT and IO$_TTY_PORT_BUFIO I/O function codes. This section describes
these I/O function codes and their associated arguments.

6.4.1. Interface Definition
The following definitions are used by the interface. The symbols are defined in SYS
$LIBRARY:TNIODEF.H.

281

Chapter 6. OpenVMS System Services Reference

6.4.1.1. Item List Codes
Table 6.7, "List Codes for the p5 Item" describes the symbols used with the p5 parameter.

Table 6.7. List Codes for the p5 Item

Item Code Maximum Size Description

TN$_ACCPORNAM 64 Access port name string.
When written, the string's
length is determined by the
item_length field. The value of
item_length should not be
more than 63 bytes. When read,
the string is returned in ASCIC
format (the first byte contains the
string's length), so a size of 64 is
appropriate.

TN$_CHARACTERISTICS 4 Characteristics mask. This
longword contains a bit mask of
the device's characteristics read
or to be written. (See Table 6.8,
"Characteristic Mask Bits".)

TN
$_CONNECTION_ATTEMPTS

4 Reconnection attempts. This item
is the number of unsuccessful
reconnection attempts which have
been made on a reconnectable
device. The value will be
reinitialized when a successful
connection is made. This item is
read only.

TN
$_CONNECTION_INTERVAL

4 Minimum time (in seconds)
before reconnection attempts.

TN
$_CONNECTION_TIMEOUT

4 Current time (in seconds) since
the last reconnection attempt.
This item is read only.

TN$_DATA_HIGH 4 Maximum amount of output data
(in bytes) buffered at the network
port. This number does not affect
the amount of data buffered
within the socket.

TN$_DEVICE_UNIT 4 Terminal device unit number.
When written, this value must be
between 1 and 9999.

TN$_IDLE_INTERVAL 4 Maximum idle time (in seconds)
allowed before a connection is to
be broken. Connections are not
broken if the device is stalled.

TN$_IDLE_TIMEOUT 4 Current time (in seconds) since
last output on the terminal. This
item is read only.

282

Chapter 6. OpenVMS System Services Reference

Item Code Maximum Size Description

TN$_LOCAL_ADDRESS 32 Local sockaddr of the active
connection. When written,
the value of item_length
determines the size of the
sockaddr. Note that the
sockaddr is in BSD Version
4.4 format, which includes
a sockaddr size field. (C
programs should be compiled
with the _SOCKADDR_LEN
symbol defined.) This item is
read only.

TN
$_NETWORK_DEVICE_NAME

64 Name of the network
pseudodevice currently bound
to the terminal. When read, the
data is returned in ASCIC format
(the first byte contains the string's
length). This item is read only.

TN$_PROTOCOL 4 Session protocol. (See Table 6.9,
"Protocol Type Codes".)

TN$_REMOTE_ADDRESS 32 Remote peer's sockaddr of the
active connection. Note that the
sockaddr is in BSD Version
4.4 format, which includes a
sockaddr size field. The size
of the sockaddr should be
determined from this field. This
item is read only.

TN$_SERVICE_TYPE 4 Class of terminal service. (See
Table 6.10, "Service Type
Codes".)

TN$_STATUS 4 Current device and session status.
This item is read only.

6.4.1.2. Characteristic Mask Bits
Table 6.8, "Characteristic Mask Bits" describes the characteristic mask bits used with the p5 parameter.

Table 6.8. Characteristic Mask Bits

Characteristic Description

TN$M_AUTOCONNECT The device supports automatic connect/reconnect.
TN$M_LOGIN_ON_DASSGN Initiate a login when the TELNET device is

deassigned. This characteristic requires the
BYPASS or SYSNAM privilege or executive or
kernel mode calls.

TN$M_LOGIN_TIMER Used in conjunction with TN
$M_LOGIN_ON_DASSGN, this bit indicates
that the login completion timer applies. If the

283

Chapter 6. OpenVMS System Services Reference

Characteristic Description
TN device fails to login within 60 seconds,
the connection will be broken and the device
deallocated. This characteristic requires the
BYPASS or SYSNAM privileges or executive or
kernel mode calls.

TN$M_PERMANENT_UCB The TELNET device is to remain until explicitly
deleted.

TN$M_RETAIN_ON_DASSGN The TELNET device is not to be deleted upon the
deassignment of the last channel to this device.
This condition is cleared on this last deassignment,
so that a subsequent assign and deassign will result
in the device being deleted.

TN$M_VIRTUAL_TERMINAL When logging in under this device, a virtual
terminal is to be created by TTDRIVER.

6.4.1.3. Protocol Types
Table 6.9, "Protocol Type Codes" describes the protocol types used with the p5 parameter.

Table 6.9. Protocol Type Codes

Protocol Type Description

TN$K_PROTOCOL_UNDEFINED There is no explicit protocol for this session. Data
is transmitted and received on the socket without
any interpretation. This is a raw connection.

TN$K_PROTOCOL_NVT Network Virtual Terminal (NVT) protocol. The
protocol understands basic session control but does
not include the options negotiation present in the
TELNET protocol.

TN$K_PROTOCOL_RLOGIN BSD Remote Login protocol. This simple protocol
provides some special control character support but
lacks the architecture independence of the NVT
and TELNET protocols.

TN$K_PROTOCOL_TELNET TELNET protocol. Including the basic NVT
protocol, TELNET adds support for options
negotiation. This can provide an enhanced terminal
session depending upon the client and server
involved.

6.4.1.4. Service Types
Table 6.10, "Service Type Codes" describes the service type codes used with the p5 parameter.

Table 6.10. Service Type Codes

Service Type Description

TN$K_SERVICE_NONE The service type is not currently known.
TN$K_SERVICE_INCOMING The service is an incoming connection.
TN$K_SERVICE_OUTGOING The service is an outgoing connection.

284

Chapter 6. OpenVMS System Services Reference

6.4.2. Passing Parameters to the TELNET Port Driver
The IO$_TTY_PORT function is used to pass $QIO parameters through the terminal driver to the
TELNET port driver. The actual subfunction is encoded as an option mask and may be:

● IO$M_TN_STARTUP — Bind socket to a TELNET terminal.

● IO$M_TN_SHUTDOWN — Unbind socket from a TELNET terminal.

6.5. TELNET Port Driver I/O Function Codes

IO$_TTY_PORT|IO$M_TN_STARTUP
IO$_TTY_PORT|IO$M_TN_STARTUP — Bind socket to a TELNET terminal. This subfunction will
bind a created (connected) socket to a TELNET terminal device.

Arguments
p1

OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

The p1 argument contains the channel number of the socket over which the TELNET session is to be
established.

p2

OpenVMS usage: protocol_number
type: longword (unsigned)
access: read only
mechanism: by value

The p2 argument contains the protocol selection.

p3

OpenVMS usage: characteristics_mask
type: longword (unsigned)
access: read only
mechanism: by value

The p3 argument specifies a mask of characteristics to apply against the connection. See Table 6.8,
"Characteristic Mask Bits" for possible values.

Description
The IO$M_TN_STARTUP subfunction allows the application to communicate over a socket using the
terminal driver QIO interface. Note that incoming and outgoing data is processed by the terminal driver,

285

Chapter 6. OpenVMS System Services Reference

and that the terminal's characteristics may affect the format of the data. Be aware that by default, the
terminal will echo incoming data back to the sender.

Once the subfunction completes, the application is free to perform all terminal QIO functions on the
connection. While the socket is bound to a terminal device, it will process neither the IO$_READxBLK
nor the IO$_WRITExBLK function, and will return the error SS$_DEVINUSE.

Condition Values Returned
SS$_IVCHAN

Programming error. The specified channel is not valid.

SS$_IVMODE

Programming error. The access mode of the channel is more privileged than the access mode of the
terminal's channel.

SS$_NOPRIV

Programming error. The TN$M_LOGIN_ON_DASSGN characteristic was specified in a
characteristics mask from a $QIO in USER or SUPERVISOR mode without either the BYPASS or
SYSPRV privilege.

SS$_NOTNETDEV

Programming error. The specified channel is an assignment to a non-BG device.

SS$_PROTOCOL

Programming error. The specified protocol number is not valid, or the network is not available.

IO$_TTY_PORT|IO$M_TN_SHUTDOWN
IO$_TTY_PORT|IO$M_TN_SHUTDOWN — Unbind socket from a TELNET terminal. This
subfunction will unbind a previously bound socket-terminal connection.

Arguments
p1

OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

The p1 argument contains the channel number of the socket to establish the TELNET session.

Description
The IO$M_TN_SHUTDOWN subfunction allows the application to break a previously bound socket-
terminal connection (created with IO$M_TN_STARTUP). The channel must be from an assignment to
the same network pseudodevice in the socket-terminal connection.

286

Chapter 6. OpenVMS System Services Reference

Upon completion, the application retains the assignments to the connection and the TELNET terminal,
but they are no longer related. Any subsequent IO$_READxBLK or IO$_WRITExBLK function on the
socket channel will no longer return the error SS$_DEVINUSE.

Condition Values Returned
SS$_IVCHAN

Programming error. The specified channel is not valid.

SS$_IVMODE

Programming error. The access mode of the channel is more privileged than the access mode of the
terminal's channel.

SS$_NOTNETDEV

Programming error. The specified channel is an assignment to a non-BG device.

SS$_DEVREQERR

Programming error. The device on the channel does not match the device in the socket-terminal
connection.

6.6. Buffered Reading and Writing of Item
Lists
The IO$_TTY_PORT_BUFIO function is used to pass $QIO parameters through the terminal driver
to the TELNET port driver. IO$_TTY_PORT_BUFIO differs from IO$_TTY_PORT in that certain
subfunctions accept buffered item lists for reading or writing parameters to the terminal device.

● IO$M_TN_SENSEMODE — Read device parameters.

● IO$M_TN_SETMODE — Write device parameters.

The subfunctions of IO$_TTY_PORT_BUFIO accept an item list for input or output. Figure 6.1,
"Subfunction Item List" shows the format of this item list.

Figure 6.1. Subfunction Item List

The item list is terminated with an item_code and item_length, both of which are zero.

The subfunctions of IO$_TTY_PORT_BUFIO can be combined into a single $QIO. For example, the IO
$M_TN_SETMODE and IO$M_TN_CONNECT can be combined to set the device's parameters and
then to attempt to make a connection.

287

Chapter 6. OpenVMS System Services Reference

The subfunctions are performed in the following order:

1. IO$M_TN_SETMODE

2. IO$M_TN_CONNECT

3. IO$M_TN_SENSEMODE

4. IO$M_TN_DISCON

Note

Certain items are read only (IO$M_TN_SENSEMODE) and cannot be written (IO
$M_TN_SETMODE). Normally, attempting to write such items would result in the error
SS$_BADATTRIB. However, if a combination operation (IO$M_TN_SENSEMODE|IO
$M_TN_SETMODE) is being performed, these items will not result in an error. Rather, the items
will be ignored in the IO$M_TN_SETMODE processing, and the $QIO will continue with IO
$M_TN_SENSEMODE processing, returning the information that the item specifies.

6.7. TELNET Port Driver I/O Function Codes

IO$_TTY_PORT_BUFIO|IO$M_TN_SENSEMODE
IO$_TTY_PORT_BUFIO|IO$M_TN_SENSEMODE — Read device parameters.

Arguments

p5

OpenVMS usage: item_list_2
type: vector byte (unsigned)
access: read only
mechanism: by reference

The p5 argument is the address of an item list that contains a summary of information to be read from
the device.

Description

The IO$M_TN_SENSEMODE subfunction of IO$_TTY_PORT_BUFIO is used to read the parameters
associated with a device.

Condition Values Returned

SS$_BADATTRIB

Programming error. The item code within the list is not valid. This could be because of its code,
an attempt to write a read-only parameter, or inappropriate size. The address of the item's buffer is
returned in the second longword of the I/O status block.

288

Chapter 6. OpenVMS System Services Reference

SS$_IVBUFLEN

Programming error. The length of the specified item is not acceptable. The address of the item's
buffer is returned in the second longword of the I/O status block.

SS$_NOPRIV

Programming error. An item that requires a privilege which the requestor does not have is present
in the item list. The address of the item's buffer is returned in the second longword of the I/O status
block.

IO$_TTY_PORT_BUFIO|IO$M_TN_SETMODE
IO$_TTY_PORT_BUFIO|IO$M_TN_SETMODE — Write device parameters.

Arguments
p5

OpenVMS usage: item_list_2
type: vector (byte unsigned)
access: read only
mechanism: by reference

The p5 argument is the address of an item list that contains a summary of information to be written to
the device.

Description
The IO$M_TN_SETMODE subfunction of IO$_TTY_PORT_BUFIO is used to write the parameters
associated with a device.

Condition Values Returned
SS$_BADATTRIB

Programming error. The item code within the list is not valid. This could be because of its code,
an attempt to write a read-only parameter, or inappropriate size. The address of the item's buffer is
returned in the second longword of the I/O status block.

SS$_DUPLNAM

Programming error. An attempt to set the device's unit number via the TN$_DEVICE_UNIT item
has failed because that specified unit number was already present.

SS$_IVBUFLEN

Programming error. The length of the specified item is not acceptable. The address of the item's
buffer is returned in the second longword of the I/O status block.

SS$_NOPRIV

Programming error. An item that requires a privilege which the requester does not have is present
in the item list. The address of the item's buffer is returned in the second longword of the I/O status
block.

289

Chapter 6. OpenVMS System Services Reference

290

Appendix A. Socket Options
This appendix describes the socket options that you can set with the Sockets API setsockopt()
function and the $QIO system service IO$_SETMODE and IO$_SETCHAR I/O function codes. You
can query the value of these socket options using the Sockets API getstockopt() function or the
$QIO system service IO$_SENSEMODE or IO$_SENSECHAR I/O function code.

The following tables list:

● Table A.1, "Socket Options"

● Table A.2, "TCP Protocol Options"

● Table A.3, "IP Protocol Options"

● Table A.4, "IPv6 Socket Options"

Table A.1, "Socket Options" lists the socket options that are set at the SOL_SOCKET level and their
Sockets API and system service symbol names.

Table A.1. Socket Options

Sockets API Symbol System Service Symbol Description

SO_BROADCAST TCPIP$C_BROADCAST Permits the sending of broadcast
messages. Requires an integer
parameter and SYSPRV,
BYPASS, or OPER privilege.
Optional for a connectionless
datagram.

If the inet subsystem attribute
ovms_nobroadcastcheck
is not zero, any nonprivileged
application can send broadcast
messages.

SO_DONTROUTE TCPIP$C_DONTROUTE Indicates that outgoing messages
should bypass the standard
routing facilities. Instead, the
messages are directed to the
appropriate network interface
according to the network portion
of the destination address.

SO_ERROR TCPIP$C_ERROR Obtains the socket error status
and clears the error on the socket.

SO_FULL_DUPLEX_CLOSE TCPIP
$C_FULL_DUPLEX_CLOSE

When set, if the remote
application closes the connection,
the next transmit operation will
return an error.

SO_KEEPALIVE TCPIP$C_KEEPALIVE Keeps connections active.
Enables the periodic transmission
of keepalive probes to the remote
system. If the remote system

291

Appendix A. Socket Options

Sockets API Symbol System Service Symbol Description
fails to respond to the keepalive
probes, the connection is broken.

If the SO_KEEPALIVE
option is enabled, the
values of TCP_KEEPCNT,
TCP_KEEPINTVL and
TCP_KEEPIDLE affect TCP
behavior on the socket.

SO_LINGER TCPIP$C_LINGER Lingers on a close() function
if data is present. Controls
the action taken when unsent
messages queue on a socket
and a close() function is
performed. Uses a linger
structure parameter defined
in SOCKET.H to specify the
state of the option and the linger
interval.

If SO_LINGER is specified, the
system blocks the process during
the close() function until it
can transmit the data or until
the time expires. If the option is
not specified and a close()
function is issued, the system
allows the process to resume as
soon as possible.

SO_OOBINLINE TCPIP$C_OOBINLINE When this option is set, out-
of-band data is placed in the
normal input queue. When
SO_OOBINLINE is set, the
MSG_OOB flag to the receive
functions cannot be used to read
the out-of-band data. A value
of 0 disables the option, and a
nonzero value enables the option.

SO_RCVBUF TCPIP$C_RCVBUF Sets the receive buffer size,
in bytes. Requires an integer
parameter and SYSPRV,
BYPASS, or OPER privileges.

SO_RCVTIMEO TCPIP$C_RCVTIMEO For VSI use only. Sets the
timeout value for a recv()
operation. The argument is a
pointer to a timeval structure
containing an integer value
specified in seconds.

SO_REUSEADDR TCPIP$C_REUSEADDR Specifies that the rules used in
validating addresses supplied

292

Appendix A. Socket Options

Sockets API Symbol System Service Symbol Description
by a bind() function should
allow reuse of local addresses.
A value of 0 disables the option,
and a non-zero value enables the
option. The SO_REUSEPORT
option is automatically set
when an application sets
SO_REUSEADDR.

SO_REUSEPORT TCPIP$C_REUSEPORT Allows more than one process to
receive UDP datagrams destined
for the same port. The bind()
call that binds a process to the
port must be preceded by a
setsockopt() call specifying
this option. SO_REUSEPORT
is automatically set when
an application sets the
SO_REUSEADDR option.

SO_SHARE TCPIP$C_SHARE Allows multiple processes to
share the socket.

SO_SNDBUF TCPIP$C_SNDBUF Sets the send buffer size in bytes.
Takes an integer parameter and
requires SYSPRV, BYPASS, or
OPER privileges. Optional for a
connectionless datagram.

SO_SNDLOWAT TCPIP$C_SNDLOWAT Sets the low-water mark for a
send() operation. The send
low-water mark is the amount of
space that must exist in the socket
send buffer for select() to
return writeable. Takes an integer
value specified in bytes.

SO_SNDTIMEO TCPIP$C_SNDTIMEO For VSI use only. Sets the
timeout value for a send()
operation. The argument is a
pointer to a timeval structure
containing an integer value
specified in seconds.

SO_TYPE TCPIP$C_TYPE Obtains the socket type.
SO_USELOOPBACK TCPIP$C_USELOOPBACK For VSI use only. This option

applies only to sockets in the
routing domain (AF_ROUTE),
When you enable this option,
the socket receives a copy of
everything sent on the socket.

Table A.2, "TCP Protocol Options" lists the TCP protocol options that are set at the IPPROTO_TCP level
and their Sockets API and system service symbol names. You must use the TCP.H header file to specify
the TCP protocol options.

293

Appendix A. Socket Options

Table A.2. TCP Protocol Options

Sockets API Symbol System Service Symbol Description

TCP_KEEPCNT TCPIP$C_TCP_KEEPCNT When the SO_KEEPALIVE
option is enabled, TCP sends
probes to the remote system
of a connection that has been
idle for a period of time. The
TCP_KEEPCNT option specifies
the maximum number of
keepalive probes to be sent.

To display the values of the
inet subsystem attributes, enter
the following command at the
system prompt:

$ TCPIP sysconfig -q
 inet

The default value for
TCP_KEEPCNT is 8.

TCP_KEEPIDLE TCPIP$C_TCP_KEEPIDLE When the SO_KEEPALIVE
option is enabled, TCP sends
probes to the remote system
of a connection that has been
idle for a period of time.
TCP_KEEPIDLE specifies the
number of seconds before TCP
will send the initial keepalive
probe.

To display the values of the
inet subsystem attributes, enter
the following command at the
system prompt:

$ TCPIP sysconfig -q
 inet

The default value for
TCP_KEEPIDLE is 75 seconds1.

TCP_KEEPINIT TCPIP$C_TCP_KEEPINIT If a TCP connection cannot
be established within a period
of time, TCP will time out the
connection attempt. The default
timeout value for this initial
connection establishment is 75
seconds. The TCP_KEEPINIT
option specifies the number
of seconds to wait before the
connection attempt times out.
For passive connections, the

294

Appendix A. Socket Options

Sockets API Symbol System Service Symbol Description
TCP_KEEPINIT option value
is inherited from the listening
socket.

To display the values of the
inet subsystem attributes, enter
the following command at the
system prompt:

$ TCPIP sysconfig -q
 inet

The default value for
TCP_KEEPINIT is 75 seconds1.

TCP_KEEPINIT option does not
require the SO_KEEPALIVE
option to be enabled.

TCP_KEEPINTVL TCPIP$C_TCP_KEEPINTVL When the SO_KEEPALIVE
option is enabled, TCP sends
probes to the remote system
on a connection that has been
idle for a period of time. The
TCP_KEEPINTVL option
specifies the number of seconds
to wait before retransmitting
a keepalive probe. The default
value for this retransmit interval
is 75 seconds1.

To display the values of the
inet subsystem attributes, enter
the following command at the
system prompt:

$ TCPIP sysconfig -q
 inet

TCP_NODELAY TCPIP$C_TCP_NODELAY Specifies that the send()
operation not be delayed to
merge packets.

Under most circumstances, TCP
sends data when it is presented.
When outstanding data has not
yet been acknowledged, TCP
gathers small amounts of the data
into a single packet and sends
it when an acknowledgment
is received. This functionality
can cause significant delays for
some clients that do not expect
replies (such as windowing

295

Appendix A. Socket Options

Sockets API Symbol System Service Symbol Description
systems that send a stream of
events from the mouse). The
TCP_NODELAY option disables
the Nagle algorithm, which
reduces the number of small
packets on a wide area network.

TCP_MAXSEG TCPIP$C_TCP_MAXSEG Sets the maximum transmission
unit (MTU) of a TCP segment
to a specified integer value from
1 to 65535. The default is 576
bytes. Can only be set before a
listen() or connect()
operation on the socket. For
passive connections, the value
is obtained from the listening
socket.

Note that TCP does not use an
MTU value that is less than 32 or
greater than the local network's
MTU. Setting the option to zero
results in the default behavior.

TCP_NODELACK TCPIP$C_TCP_NODELACK When specified, disables
the algorithm that gathers
outstanding data that has not
been acknowledged and sends
it in a single packet when
acknowledgment is received.
Takes an integer value.

TCP_PAWS TCPIP$C_TCP_PAWS When specified, the receiver
rejects any old duplicate segments
it receives. This option is used on
synchronized TCP connections
only, and requires that the
TCP_TSOPTENA option be
enabled also.

TCP_SACKENA TCPIP$C_TCP_SACKENA When specified, the receiver
can inform the sender about all
segments that arrive successfully.
This allows the sender to
retransmit only those segments
that have actually been lost. This
option is useful in cases where
multiple segments are dropped.

TCP_TSOPTENA TCPIP$C_TSOPTENA When specified, the sender
places a timestamp in each
data segment. The receiver,
if configured to accept them,
sends these times back in the

296

Appendix A. Socket Options

Sockets API Symbol System Service Symbol Description
acknowledgement (ACK)
segments. This allows the
sender to measure the round-trip
communication time.

TCP protocol options that are obsolete but provided for backward compatibility

TCP_DROP_IDLE TCPIP$C_TCP_DROP_IDLE When the TCP_KEEPALIVE
option is enabled, the
TCP_DROP_IDLE option
specifies the time interval after
which a connection is dropped.
The value of TCP_DROP_IDLE
is an integer specified in seconds.

When the TCP_DROP_IDLE
option is set, the value of
the TCP_KEEPCNT option
is calculated as the value of
TCP_DROP_IDLE divided by
the value of TCP_KEEPINTVL.

A call to getsockopt()
function specifying the
TCP_DROP_IDLE option returns
the result of multiplying the
values of TCP_KEEPCNT and
TCP_KEEPINTVL.

TCP_PROBE_IDLE TCPIP$C_TCP_PROBE_IDLE When the TCP_KEEPALIVE
option is enabled, the
TCP_PROBE_IDLE option
specifies the time interval
between the keepalive probes and
for the connections establishing
the timeout. The value of
TCP_PROBE_IDLE is an integer
specified in seconds.

When this option is set,
TCP_KEEPINTVL,
TCP_KEEPIDLE and
TCP_KEEPINIT are set
to the value specified for
TCP_PROBE_IDLE.

A call to the getsockopt()
function specifying the
TCP_PROBE_IDLE
option returns the value of
TCP_KEEPINTVL.

1The value of this option is stored internally as half-seconds. When setting or retrieving the value of the systemwide parameter, the value is
expressed as half-seconds. When setting or retrieving the value of the socket option, the value is expressed as seconds.

297

Appendix A. Socket Options

Table A.3, "IP Protocol Options" lists options that are set at the IPPROTO_IP level and their Sockets
API and system service symbol names.

Table A.3. IP Protocol Options

Sockets API Symbol System Service Symbol Description

IP_ADD_MEMBERSHIPTCPIP
$C_IP_ADD_MEMBERSHIP

Adds the host to the membership of a
multicast group.

A host must become a member of a
multicast group before it can receive
datagrams sent to the group.

Membership is associated with a
single interface; programs running on
multihomed hosts may need to join the
same group on more than one interface.
Up to IP_MAX_MEMBERSHIPS
(currently 20) memberships may be added
on a single socket.

IP_DROP_MEMBERSHIPTCPIP
$C_IP_DROP_MEMBERSHIP

Removes the host from the membership of
a multicast group.

IP_HDRINCL TCPIP$C_IP_HDRINCL If specified for a raw IP socket, you must
build the IP header for all datagrams sent
on the raw socket.

IP_MULTICAST_IF TCPIP$C_IP_MULTICAST_IF Specifies the interface for outgoing
multicast datagrams sent on this socket.
The interface is specified as an in_addr
structure.

IP_MULTICAST_LOOPTCPIP
$C_IP_MULTICAST_LOOP

Disables loopback of local delivery.

If a multicast datagram is sent to a group
which the sending host is a member, a
copy of the datagram is looped back by
the IP layer for local delivery (the default).
To disable the loopback delivery, specify a
value of 0.
Specifies the time-to-live (TTL) value for
outgoing multicast datagrams.

Takes an integer value between 0 and 255:
Value Action

0 Restricts distribution
to applications
running on the local
host.

IP_MULTICAST_TTL TCPIP$C_IP_MULTICAST_TTL

1 Forwards the
multicast datagram
to hosts on the local
subnet.

298

Appendix A. Socket Options

Sockets API Symbol System Service Symbol Description

2 - 255 With a multicast
router attached to
the sending host's
network, forwards
multicast datagrams
beyond the local
subnet.

Multicast routers
forward the
datagram to known
networks that have
hosts belonging
to the specified
multicast group.
The TTL value is
decremented by
each multicast router
in the path. When
the TTL value is
decremented to
zero, the datagram
is no longer
forwarded.

IP_OPTIONS TCPIP$C_IP_OPTIONS Provides IP options to be transmitted in
the IP header of each outgoing packet.

IP_RECVDSTADDR TCPIP$C_IP_RECVDSTADDR Enables a SOCK_DGRAM socket to
receive the destination IP address for a
UDP datagram.

IP_RECVOPTS TCPIP$C_IP_RECVOPTS Enables a SOCK_DGRAM socket to
receive IP options.

IP_TTL TCPIP$C_IP_TTL Time to live (TTL) for a datagram.
IP_TOS TCPIP$C_IP_TOS Type of service (1-byte value).

Table A.4, "IPv6 Socket Options" describes the socket options supporting IPv6. The IPv6 socket options
do not have system service symbols.

Table A.4. IPv6 Socket Options

Sockets API Symbol Description

IPV6_RECVPKTINFO Source and destination IPv6 address, and sending
and receiving interface.

IPV6_RECVHOPLIMIT Hop limit.
IPV6_RECVRTHDR Routing header.
IPV6_RECVHOPOPTS Hop-by-hop options.
IPV6_RECVDSTOPTS Destination options.
IPV6_CHECKSUM For raw IPv6 sockets other than ICMPv6 raw

sockets, causes the kernel to compute and store

299

Appendix A. Socket Options

Sockets API Symbol Description
checksum for output and to verify the received
checksum on input. Discards the packet if the
checksum is in error.

IPV6_ICMP6_FILTER Fetches and stores the filter associated with the
ICMPv6 raw socket using the getsockopt()
function and setsockopt() functions.

IPV6_UNICAST_HOPS Sets the hop limit for all subsequent unicast packets
sent on a socket. You can also use this option with
the getsockopt() function to determine the
current hop limit for a socket.

IPV6_MULTICAST_IF Sets the interface to use for outgoing multicast
packets.

IPV6_MULTICAST_HOPS Sets the hop limit for outgoing multicast packets.
IPV6_MULTICAST_LOOP Controls whether to deliver outgoing multicast

packets back to the local application.
IPV6_JOIN_GROUP Joins a multicast group on the specified interface.
IPV6_LEAVE_GROUP Leaves a multicast group on the specified interface.

300

Appendix B. IOCTL Requests
The ioctl() Sockets API function and the IO$_SENSEMODE and IO$_SETMODE function codes
used with the $QIO system service perform I/O control functions on a network pseudodevice (BG:).

The following tables list the IOCTL requests supported by TCP/IP Services, their data types, the
equivalent $QIO system services, and descriptions of their operations:

● Table B.1, "Terminal Compatibility Operations" describes the terminal compatibility options.

● Table B.2, "Socket Operations" describes the socket operations.

● Table B.3, "Interface Operations" describes the interface operations. These request types are defined
in the IF.H header file.

● Table B.4, "Routing Table Operations" describes the routing operations. These request types are
defined in the ROUTE.H header file.

● Table B.5, "ARP Cache Operations" describes the ARP cache operations. These request types are
defined in the IF_ARP.H header file.

Table B.1. Terminal Compatibility Operations

Operation Data Type $QIO Function Code Description

FIONREAD int IO$_SENSEMODE Get number of bytes to
read.

FIONBIO int IO$_SETMODE Set/clear non-blocking I/
O.

FIOASYNC int IO$_SETMODE Set/clear asynchronous I/
O.

FIOSETOWN int IO$_SETMODE Set owner.
FIOGETOWN int IO$_SENSEMODE Get owner.
FIOPIPESTAT int IO$_SENSEMODE Pipe first-in, first out

statistics.
FIOFATTACH int IO$_SETMODE Internal: fattach.
FIOFDETACH int IO$_SETMODE Internal: fdetach.

Table B.2. Socket Operations

Operation Data Type $QIO Function Code Description

SIOCSHIWAT int IO$_SETMODE Set high watermark.
SIOCGHIWAT int IO$_SENSEMODE Get high watermark.
SIOCSLOWAT int IO$_SETMODE Set low watermark.
SIOCGLOWAT int IO$_SENSEMODE Get low watermark.
SIOCATMARK int IO$_SENSEMODE Determines whether

you are at the out-of-
band character mark.
The operation returns
a nonzero value if the
socket's read pointer

301

Appendix B. IOCTL Requests

Operation Data Type $QIO Function Code Description
is currently at the end-
of-band mark or a
zero value if the read
pointer is not at the
out-of-band mark. The
value is returned in the
integer pointed to by the
third argument of the
ioct() call. For more
information, see Section
2.11.2, "Reading OOB
Data (System Services)".

Table B.3. Interface Operations

Operation Data Type $QIO Function Code Description

SIOCSIFADDR struct ifreq IO$_SETMODE Sets the interface
address from the
ifr_addr member.
The initialization
function for the interface
is also called.

SIOCSIFDSTADDR struct ifreq IO$_SETMODE Sets the point-to-
point address from
the ifr_dstaddr
member.

SIOCSIFFLAGS struct ifreq IO$_SETMODE Sets the interface flags
from the ifr_flags
member.

SIOCGIFFLAGS struct ifreq IO$_SENSEMODE Returns the
interface flags in the
ifr_flags member.
The flags indicate
whether the interface
is up (IFF_UP), is a
point-to-point interface
(IFF_POINTOPOINT),
supports broadcasts
(IFF_BROADCAST),
and other flags.

SIOCSIFBRDADDR struct ifreq IO$_SETMODE Sets the broadcast
address from the
ifr_broadaddr
member.

SIOCSIFNETMASK struct ifreq IO$_SETMODE Sets the subnet
address mask from the
ifr_addr member.

SIOCGIFMETRIC struct ifreq IO$_SENSEMODE Returns the interface
routing metric in the

302

Appendix B. IOCTL Requests

Operation Data Type $QIO Function Code Description
ifr_metric member.
The interface metric is
maintained by the kernel
for each interface but
is used by the routing
software (ROUTED).
The interface metric is
added to the hop count
(to make an interface
less favorable).

SIOCSIFMETRIC struct ifreq IO$_SETMODE Sets the interface
routing metric from the
ifr_metric member.

SIOCDIFADDR struct ifreq IO$_SETMODE Deletes an interface
address

SIOCAIFADDR struct ifaliasreq IO$_SETMODE Adds or changes an
interface alias.

SIOCPIFADDR struct ifaliasreq IO$_SETMODE Sets the primary
interface address.

SIOCADDMULTI struct ifreq IO$_SETMODE Adds a multicast
address.

SIOCDELMULTI struct ifreq IO$_SETMODE Deletes a multicast
address.

SIOCENABLBACK struct ifreq IO$_SETMODE Enables the loopback
interface.

SIOCDISABLBACK struct ifreq IO$_SETMODE Disables the loopback
interface.

SIOCSIPMTU struct ifreq IO$_SETMODE Sets the interface IP
MTU value.

SIOCRIPMTU struct ifreq IO$_SENSEMODE Returns the interface IP
MTU value.

SIOCGIFINDEX struct ifreq IO$_SENSEMODE Returns the IF index
value.

SIOCGMEDIAMTU struct ifreq IO$_SENSEMODE Returns the value of the
media MTU.

SIOCGIFTYPE struct ifreq IO$_SENSEMODE Returns the interface
type.

SIOCGIFADDR struct ifreq IO$_SENSEMODE Returns the interface
address.

SIOCGIFDSTADDR struct ifreq IO$_SENSEMODE Returns the point-to-
point interface address.

SIOCGIFBRDADDR struct ifreq IO$_SENSEMODE Returns the interface
broadcast address.

SIOCGIFCONF struct ifconf IO$_SENSEMODE Returns the interface list.

303

Appendix B. IOCTL Requests

Operation Data Type $QIO Function Code Description

SIOCGIFNETMASK struct ifreq IO$_SENSEMODE Returns the interface
subnet address mask.

Table B.4. Routing Table Operations

Operation Data Type $QIO Function Code Description

SIOCADDRT struct ortentry IO$_SETMODE Adds an entry to the
routing table.

SIOCDELRT struct ortentry IO$_SETMODE Deletes an entry from
the routing table.

Table B.5. ARP Cache Operations

Operation Data Type $QIO Function Code Description

SIOCSARP struct arpreq IO$_SETMODE Adds a new entry to
or modifies an existing
entry in the ARP table.

SIOCDARP struct arpreq IO$_SETMODE Deletes an entry from
the ARP table.

SIOCGARP struct arpreq IO$_SENSEMODE Returns an ARP table
entry.

304

Appendix C. Data Types
As part of the OpenVMS common language environment, the TCP/IP system services data types provide
compatibility between procedure calls that support many different high-level languages. Specifically,
the OpenVMS data types apply to Alpha, I64, and VAX architectures as the mechanism for passing
argument data between procedures. This appendix describes the context and structure of the TCP/IP
system services data types and identifies the associated declarations to each of the specific high-level
language implementations.

C.1. OpenVMS Data Types
In Chapter 6, "OpenVMS System Services Reference", the OpenVMS usage entry in the TCP/IP Services
documentation format for system services indicates the OpenVMS data type of the argument. Most
data types can be considered conceptual types; that is, their meaning is unique in the context of the
OpenVMS operating system. The OpenVMS data type access_mode is one example. The storage
representation of this OpenVMS type is an unsigned byte, and the conceptual content of this unsigned
byte is the fact that it designates a hardware access mode and therefore has only four valid values: 0,
kernel mode; 1, executive mode; 2, supervisor mode; and 3, user mode. However, some OpenVMS data
types are not conceptual types; that is, they specify a storage representation but carry no other semantic
content in the OpenVMS context. For example, the data type byte_signed is not a conceptual type.

Note

The OpenVMS usage entry is not a traditional data type such as the OpenVMS standard data types
—byte, word, longword, and so on. It is significant only within the OpenVMS operating system
environment and is intended solely to expedite data declarations within application programs.

To use the OpenVMS usage entry, perform the following steps:

1. Find the data type in Table C.1, "TCP/IP Services Usage Data Type Entries" and read its definition.

2. Find the same OpenVMS data type in the C and C++ language implementation table (Table C.2, "C
and C++ Implementations") and its corresponding source language type declaration.

3. Use this code as your type declaration in your application program. Note that, in some instances, you
might have to modify the declaration.

4. For all other OpenVMS data types, refer to the VSI OpenVMS Programming Concepts Manual,
Volume II manual.

Table C.1, "TCP/IP Services Usage Data Type Entries" lists and describes OpenVMS data type
declarations for the OpenVMS usage entry of system services unique to TCP/IP Services.

Table C.1. TCP/IP Services Usage Data Type Entries

Data Type Definition

buffer_list Structure that consists of one or more descriptors
defining the length and starting address of user
buffers. On Alpha and I64 systems, each descriptor
can be a 32- or 64-bit fixed-length descriptor. On
VAX systems, each descriptor is a 32-bit fixed-
length descriptor. For more information concerning
descriptors, see the OpenVMS Calling Standard.

305

Appendix C. Data Types

Data Type Definition

input_parameter_list Structure that consists of one or more
item_list_2 or ioctl_comm structures.

Each item_list_2 structure describes an
individual parameter that can be set by a service.
Such parameters include socket or protocol options
as identified by the item's type field.

Each ioctl_comm structure describes an IOCTL
command; its encoded request code and address of
its associated argument.

ioctl_comm Quadword structure that describes an IOCTL
command's encoded request code and address of
its associated argument. It contains two longword
fields, as depicted in the following diagram:

The first field is a longword containing the IOCTL
encoded request code specifying the type of I/O
control operation to be performed.

The second field is a longword containing the
address of a variable or a data structure targeted by
this IOCTL command.

item_list_2 Quadword structure that describes the size, data
type, and starting address of a user-supplied data
item. It contains three fields, as depicted in the
following diagram:

The first field is a word containing the length
(in bytes) of the user-supplied data item being
described.

The second field is a word containing a symbolic
code specifying the data type of the user-supplied
data item.

The third field is a longword containing the
starting address of the user-supplied data item.

item_list_2 descriptor An item_list_2 structure, used as an
argument descriptor and containing structural
information about the argument's type and the
address of a data item. This data item is associated
with the argument.

The format of this descriptor is unique to TCP/IP
Services and supplements argument descriptors
defined in the OpenVMS Calling Standard.

item_list_3 A 12-byte structure that describes the size, data
type, and address of a buffer in which a service
writes information. It contains four fields, as
depicted in the following diagram:

306

Appendix C. Data Types

Data Type Definition
The first field is a word containing the length
(in bytes) of the buffer in which a service writes
information. The length of the buffer needed
depends on the data type specified in the type
field. If the value of buffer length is too small, the
service truncates the data.

The second field is a word containing a symbolic
code and specifies the type of information that a
service is to return.

The third field is a longword containing the
address of the buffer in which a service writes the
information.

The fourth field is a longword containing the
address of a longword in which a service writes
the length in bytes of the information it actually
returned.

item_list_3 descriptor An item_list_3 structure, used as an
argument descriptor and containing structural
information about the argument's type and
the address of a buffer used to return service
information. This buffer is associated with the
argument.

The format of this descriptor is unique to TCP/IP
Services and supplements argument descriptors
defined in the OpenVMS Calling Standard.

output_parameter_list Structure that consists of one or more
item_list_3 or ioctl_comm structures.

Each item_list_3 structure describes an
individual parameter that can be returned by a
service. Such parameters include socket or protocol
options as identified by the item's type field.

Each ioctl_comm structure describes an IOCTL
command, its encoded request code, and the
address of its associated argument.

socket_name Internet domain socket address structure that
consists of an Internet address and a port number.
The layouts of socket address structures of BSD
Version 4.3 and BSD Version 4.4 are different.

BSD Version 4.3 specifies a 16-byte IPv4 socket
address structure. It contains four fields, as
depicted in the following diagram:

307

Appendix C. Data Types

Data Type Definition
The first field is a word identifying a socket
address structure as belonging to the internet
domain (always a value of 2).

The second field is a word containing a 16-bit port
number (stored in network byte order) used to
demultiplex transport-level messages.

The third field is a longword containing a 32-
bit IPv4 internet address (stored in network byte
order).

The fourth field is a quadword. It is unused but
must be initialized to all zeros.

BSD Version 4.4 specifies a 16-byte IPv4 socket
address structure. It contains five fields, as depicted
in the following diagram:

The first field is a byte containing the size of this
socket address structure (always a value of 16).

The second field is a byte identifying a socket
address structure as belonging to the internet
domain (always a value of 2).

The third field is a word containing a 16-bit port
number (stored in network byte order) used to
demultiplex transport-level messages.

The fourth field is a longword containing a 32-
bit IPv4 internet address (stored in network byte
order).

The fifth field is a quadword. It is unused but must
be initialized to all zeros.

BSD Version 4.4 also specifies a 28-byte IPv6
socket address structure. It contains six fields, as
depicted in the following diagram:

The first field is a byte containing the size of this
socket address structure (always a value of 28).

The second field is a byte identifying a socket
address structure as belonging to the IPv6 internet
domain (always a value of 28).

The third field is a word containing the 16-bit port
number (stored in network byte order) used to
demultiplex transport-level messages.

308

Appendix C. Data Types

Data Type Definition
The fourth field is a longword containing priority
and flow label information (stored in network byte
order).

The fifth field is an octaword (16 bytes) containing
a 128-bit IPv6 Internet address (stored in network
byte order).

The sixth field is a longword containing the scope
id (stored in network byte order).

subfunction_code Longword structure specifying the exact operation
an IO$_ACPCONTROL function is to perform.
This structure has three fields, as depicted in the
following diagram:

The first field is a byte specifying the network ACP
operation.

The second field is a byte specifying the network
ACP suboperation.

The third field is word that is unused but must be
initialized to all zeros (MBZ).

socket_characteristics Longword structure specifying the address family,
socket type, and protocol of a new socket. This
structure has three fields, as depicted in the
following diagram:

The first field is a word specifying the protocol to
be used with the socket.

The second field is a byte specifying the socket
type.

The third field is a byte specifying the address
family.

C.2. C and C++ Implementations
Table C.2, "C and C++ Implementations" lists the OpenVMS data types and their corresponding C and
C++ data type declarations.

Table C.2. C and C++ Implementations

OpenVMS Data Types C and C++ Implementations

buffer_list User defined1

input_parameter_list User defined1

ioctl_comm struct ioctl_comm
{
int ioctl_req; /* ioctl request
 code */

309

Appendix C. Data Types

OpenVMS Data Types C and C++ Implementations
void *ioctl_arg; /* ioctl
 argument */
}

item_list_2 struct item_list_2
{
unsigned short length; /* item
 length */
unsigned short type; /* item type
 */
void *address; /* item
 address */
}

item_list_2 descriptor struct item_list_2
{
unsigned short length; /* argument
 length */
unsigned short type; /* argument
 type */
void *address; /* argument
 address */
}

item_list_3 struct item_list_3
{
unsigned short length; /* buffer
 length */
unsigned short type; /* buffer
 type */
void *address; /* buffer
 address */
unsigned int *retlen; /* buffer
 returned */
 /* length
 address */
}

item_list_3 descriptor struct item_list_3
{
unsigned short length; /* argument
 length */
unsigned short type; /* argument
 type */
void *address; /* argument
 address */
unsigned int *retlen; /* argument
 returned */
 /* length
 address */
}

output_parameter_list User defined1

socket_name (IPv4) include <in.h>
struct sockaddr_in

socket_name (IPv6) include <in6.h>
struct sockaddr_in6

subfunction_code struct acpfunc

310

Appendix C. Data Types

OpenVMS Data Types C and C++ Implementations
{
unsigned char code; /*
 subfunction code */
unsigned char type; /* call code
 */
unsigned short reserved;/* reserved
 */
 /* (must be
 zero) */
}

socket_characteristics struct sockchar
{
unsigned short prot; /* protocol
 */
unsigned char type; /* type
 */
unsigned char af; /* address
 format */
}

1The declaration of a user-defined data structure depends on how the data will be used. Such data structures can be declared in a variety of
ways, each of which is suitable only to specific applications.

311

Appendix C. Data Types

312

Appendix D. Error Codes
This appendix contains a table of Sockets API error codes and their equivalent OpenVMS system service
status codes (Table D.1, "Translation of Socket Error Codes to OpenVMS Status Codes").

Table D.1. Translation of Socket Error Codes to OpenVMS Status Codes

Sockets (VSI C) Error Code OpenVMS System Service
Status Code

Meaning

0 SS$_NORMAL Success
1 EPERM SS$_ABORT Not owner
2 ENOENT SS$_ABORT No such file or directory
3 ESRCH SS$_NOSUCHNODE No such process
4 EINTR SS$_ABORT Interrupted system call
5 EIO SS$_ABORT I/O error
6 ENXIO SS$_NOSUCHDEV No such device or address
7 E2BIG SS$_ABORT Argument list too long
8 ENOEXEC SS$_ABORT Execution format error
9 EBADF SS$_BADPARAM Bad file number
10 ECHILD SS$_ABORT No children
11 EAGAIN SS$_ABORT No more processes
12 ENOMEM SS$_INSFMEM Not enough core
13 EACCES SS$_ABORT Permission denied
14 EFAULT SS$_ACCVIO Bad address
15 ENOTBLK SS$_ABORT Block device required
16 EBUSY SS$_ABORT Mount device busy
17 EEXIST SS$_FILALRACC File exists
18 EXDEV SS$_ABORT Cross-device link
19 ENODEV SS$_ABORT No such device
20 ENOTDIR SS$_ABORT Not a directory
21 EISDIR SS$_ABORT Is a directory
22 EINVAL SS$_BADPARAM Invalid argument
23 ENFILE SS$_ABORT File table overflow
24 EMFILE SS$_ABORT Too many open files
25 ENOTTY SS$_ABORT Not a terminal
26 ETXTBSY SS$_ABORT Text file busy
27 EFBIG SS$_ABORT File too large
28 ENOSPC SS$_ABORT No space left on device
29 ESPIPE SS$_ABORT Illegal seek
30 EROFS SS$_ABORT Read-only file system
31 EMLINK SS$_ABORT Too many links

313

Appendix D. Error Codes

Sockets (VSI C) Error Code OpenVMS System Service
Status Code

Meaning

32 EPIPE SS$_LINKDISCON Broken pipe
33 EDOM SS$_BADPARAM Argument too large
34 ERANGE SS$_TOOMUCHDATA Result too large
35 EWOULDBLOCK SS$_SUSPENDED Operation would block
36 EINPROGRESS SS$_ABORT Operation now in progress
37 EALREADY SS$_ABORT Operation already in progress
38 ENOTSOCK SS$_NOTNETDEV Socket operation on nonsocket
39 EDESTADDRREQ SS$_NOSUCHNODE Destination address required
40 EMSGSIZE SS$_TOOMUCHDATA Message too long
41 EPROTOTYPE SS$_PROTOCOL Protocol wrong type for socket
42 ENOPROTOOPT SS$_PROTOCOL Protocol not available
43 EPROTONOSUPPORT SS$_PROTOCOL Protocol not supported
44 ESOCKTNOSUPPORT SS$_PROTOCOL Socket type not supported
45 EOPNOTSUPP SS$_ILLCNTRFUNC Operation not supported on

socket
46 EPFNOSUPPORT SS$_PROTOCOL Protocol family not supported
47 EAFNOSUPPORT SS$_PROTOCOL Address family not supported
48 EADDRINUSE SS$_DUPLNAM Address already in use
49 EADDRNOTAVAIL SS$_IVADDR Requested address cannot be

assigned
50 ENETDOWN SS$_UNREACHABLE Network is down
51 ENETUNREACH SS$_UNREACHABLE Network is unreachable
52 ENETRESET SS$_RESET Network dropped connection on

reset
53 ECONNABORTED SS$_LINKABORT Software caused connection abort
54 ECONNRESET SS$_CONNECFAIL Connection reset by peer
55 ENOBUFS SS$_INSFMEM No buffer space available
56 EISCONN SS$_FILALRACC Socket is already connected
57 ENOTCONN SS$_NOLINKS Socket is not connected
58 ESHUTDOWN SS$_SHUT Cannot send after socket

shutdown
59 ETOOMANYREFS SS$_ABORT Too many references, cannot

splice
60 ETIMEDOUT SS$_TIMEOUT Connection timed out
61 ECONNREFUSED SS$_REJECT Connection refused
62 ELOOP SS$_ABORT Too many levels of symbolic

links
63 ENAMETOOLONG SS$_ABORT File name too long
64 EHOSTDOWN SS$_SHUT Host is down

314

Appendix D. Error Codes

Sockets (VSI C) Error Code OpenVMS System Service
Status Code

Meaning

65 EHOSTUNREACH SS$_UNREACHABLE No route to host

315

Appendix D. Error Codes

316

Appendix E. Porting Applications
to IPv6
This appendix describes the changes you must make in your application code to operate in an IPv6
networking environment, including:

● Name changes

● Structure changes

● Other changes

E.1. Using AF_INET6 Sockets
Figure E.1, "Using AF_INET Socket for IPv4 Communications" shows a sample sequence of events for an
application that uses an AF_INET socket to send IPv4 packets.

Figure E.1. Using AF_INET Socket for IPv4 Communications

1. Application calls gethostbyname() and passes the host name, host1.

2. The search finds host1 in the hosts database and gethostbyname() returns the IPv4 address
1.2.3.4.

3. The application opens an AF_INET socket.

4. The application sends information to the 1.2.3.4 address.

317

Appendix E. Porting Applications to IPv6

5. The socket layer passes the information and address to the UDP module.

6. The UDP module puts the 1.2.3.4 address into the packet header and passes the information to
the IPv4 module for transmission.

Section E.6.1.1, "Client Program" contains sample program code that demonstrates these steps.

You can use the AF_INET6 socket for both IPv6 and IPv4 communications. For IPv4 communications,
create an AF_INET6 socket and pass it a sockaddr_in6 structure that contains an IPv4-mapped
IPv6 address (for example, ::ffff:1.2.3.4). Figure E.2, "Using AF_INET6 Socket to Send IPv4
Communications" shows the sequence of events for an application that uses an AF_INET6 socket to send
IPv4 packets.

Figure E.2. Using AF_INET6 Socket to Send IPv4 Communications

1. Application calls getaddrinfo() and passes the host name (host1), the AF_INET6 address
family hint, and the (AI_V4MAPPED | AI_ADDRCONFIG) flag hint. The flag tells the function
that if an IPv4 address is found for host1, return the address as an IPv4-mapped IPv6 address.

2. The search finds an IPv4 address, 1.2.3.4, for host1 in the hosts database and
getaddrinfo() returns the IPv4-mapped IPv6 address ::ffff:1.2.3.4.

3. The application opens an AF_INET6 socket.

4. The application sends information to the ::ffff:1.2.3.4 address.

5. The socket layer passes the information and address to the UDP module.

6. The UDP module identifies the IPv4-mapped IPv6 address, puts the 1.2.3.4 address into the
packet header, and passes the information to the IPv4 module for transmission.

318

Appendix E. Porting Applications to IPv6

AF_INET6 sockets can receive messages sent to either IPv4 or IPv6 addresses on the system. An
AF_INET6 socket uses the IPv4-mapped IPv6 address format to represent IPv4 addresses. Figure
E.3, "Using AF_INET6 Socket to Receive IPv4 Communications " shows the sequence of events for an
application that uses an AF_INET6 socket to receive IPv4 packets.

Figure E.3. Using AF_INET6 Socket to Receive IPv4 Communications

1. The application opens an AF_INET6 socket, binds to it, and listens on it.

2. An IPv4 packet arrives and passes through the IPv4 module.

3. The TCP layer strips off the packet header and passes the information and the IPv4-mapped IPv6
address ::ffff:1.2.3.4 to the socket layer.

4. The application calls accept() and retrieves the information from the socket.

5. The application calls getnameinfo() and passes the ::ffff:1.2.3.4 address and the
NI_NAMEREQD flag. The flag tells the function to return the host name for the address. See Table
4.3, "getnameinfo() Flags" for a description of the flag bits and their meanings.

6. The search finds the host name for the 1.2.3.4 address in the hosts database, and
getnameinfo() returns the host name.

For IPv6 communications, create an AF_INET6 socket and pass it a sockaddr_in6 structure that
contains an IPv6 address (for example, 3ffe:1200::a00:2bff:fe2d:02b2). Figure E.4, "Using
AF_INET6 Socket for IPv6 Communications" shows the sequence of events for an application that uses
an AF_INET6 socket to send IPv6 packets.

319

Appendix E. Porting Applications to IPv6

Figure E.4. Using AF_INET6 Socket for IPv6 Communications

1. Application calls getaddrinfo() and passes the host name (host1), the AF_INET6 address
family hint, and the (AI_V4MAPPED | AI_ADDRCONFIG) flag hint. The flag tells the function
that if an IPv4 address is found for host1, to return it.

2. The search finds an IPv6 address for host1 in the hosts database, and getaddrinfo() returns
the IPv6 address 3ffe:1200::a00:2bff:fe2d:02b2.

3. The application opens an AF_INET6 socket.

4. The application sends information to the 3ffe:1200::a00:2bff:fe2d:02b2 address.

5. The socket layer passes the information and address to the UDP module.

6. The UDP module identifies the IPv6 address and puts the
3ffe:1200::a00:2bff:fe2d:02b2 address into the packet header and passes the
information to the IPv6 module for transmission.

Section E.6.2.1, "Client Program" contains sample program code that demonstrates these steps.

The following sections describe how to convert an existing AF_INET application to an AF_INET6
application that is capable of communicating over both IPv4 and IPv6.

E.2. Name Changes
Most of the changes required are straightforward and mechanical, though some may require a bit of code
restructuring. For example, a routine that returns an int data type holding an IPv4 address may need
to be modified to take as an extra parameter a pointer to an in6_addr into which it writes the IPv6
address.

320

Appendix E. Porting Applications to IPv6

Table E.1, "Name Changes" summarizes the changes you must make to your application's code.

Table E.1. Name Changes

Search file for Replace with Comments

AF_INET AF_INET6 Replace with IPv6 address family
macro.

PF_INET PF_INET6 Replace with IPv6 protocol
family macro.

INADDR_ANY in6addr_any Replace with IPv6 global
variable.

E.3. Structure Changes
The structure names and field names have changed for the following structures:

● in_addr

● sockaddr_in

● sockaddr

● hostent

The following sections discuss these changes.

E.3.1. in_addr Structure
Applications that use the IPv4 in_addr structure must be changed to use the IPv6 in6_addr
structure, as follows:

IPv4 Structure IPv6 Structure

struct in_addr

unsigned int s_addr

struct in6_addr

uint8_t s6_addr

Make the following changes to your application, as needed:

1. Change the structure name in_addr to in6_addr.

2. Change the data type from unsigned int to uint8_t and the field name s_addr to
s6_addr.

E.3.2. sockaddr Structure
Applications that use the generic socket address structure (sockaddr) to hold an AF_INET socket
address (sockaddr_in) must be changed to use the AF_INET6 sockaddr_in6 structure, as
follows:

AF_INET Structure AF_INET6 Structure

struct sockaddr struct

321

Appendix E. Porting Applications to IPv6

AF_INET Structure AF_INET6 Structure
sockaddr_in6

Make the following change to your application, as needed:

● Change structure name sockaddr to sockaddr_in6.

Note

A sockaddr_in6 structure is larger than a sockaddr structure. For more information, see
Section 3.2.14, "sockaddr_in6 Structure (IPv6)".

E.3.3. sockaddr_in Structure
Applications that use the BSD Version 4.4 IPv4 sockaddr_in structure must be changed to use the
IPv6 sockaddr_in6 structure, as follows:

IPv4 Structure IPv6 Structure
struct sockaddr_in

unsigned char sin_len

sa_family_t sin_family

in_port_t sin_port

struct addr sin_addr

struct sockaddr_in6

uint8_t sin6_len

sa_family_t sin6_family

int_port_t sin6_port

struct in6_addr sin6_addr

Make the following changes to your application, as needed:

1. Change structure name sockaddr_in to sockaddr_in6. Initialize the entire
sockaddr_in6 structure to zero after your structure declarations.

2. Change the data type unsigned char to uint8_t and the field name sin_len to
sin6_len.

3. Change the field name sin_family to sin6_family.

4. Change the field name sin_port to sin6_port.

5. Change the field name sin_addr to sin6_addr.

E.3.4. hostent Structure
Applications that use the hostent structure must be changed to use the addrinfo structure, as
follows:

AF_INET Structure AF_INET6 Structure
 struct hostent struct addrinfo

Make the following change to your application, as needed:

● Change the structure name hostent to addrinfo.

322

Appendix E. Porting Applications to IPv6

See also Section E.4.2, "gethostbyname() Function" for related changes.

E.4. Function Changes
The names and parameters have changed for the following functions:

● gethostbyaddr()

● gethostbyname()

● inet_aton()

● inet_ntoa()

● inet_addr()

The following sections discuss these changes.

E.4.1. gethostbyaddr() Function
Applications that use the IPv4 gethostbyaddr() function must be changed to use the IPv6
getnameinfo() function, as follows:

AF_INET Call AF_INET6 Call

gethostbyaddr(xxx,4,AF_INET) err=getnameinfo(&sa, salen, node, nodelen,
service, servicelen, flags);

Make the following change to your application, as needed:

● Change the function name from gethostbyaddr() to getnameinfo() and provide a
pointer to the socket address structure, a character string for the returned node name, an integer for
the length of the returned node name, a character string to receive the returned service name, an
integer for the length of the returned service name, and an integer that specifies the type of address
processing to be performed.

E.4.2. gethostbyname() Function
Applications that use the gethostbyname() function must be changed to use the
getaddrinfo() function, as follows:

AF_INET Call AF_INET6 Call

gethostbyname(name) err=getaddrinfo(nodename, servname, &hints,
&res); ⋮

freeaddrinfo(&ai);

Make the following changes to your application, as needed:

1. Change the function name from gethostbyname() to getaddrinfo() and provide a
character string that contains the node name, a character string that contains the service name to use,
a pointer to a hints structure that contains processing options, and a pointer to an addrinfo
structure or structures for the returned address information.

323

Appendix E. Porting Applications to IPv6

2. Add a call to the freeaddrinfo() function to free the addrinfo structure or structures when
your application is finished using them.

E.4.3. inet_aton() Function
Applications that use the inet_aton() function must be changed to use the inet_pton()
function, as follows:

AF_INET Call AF_INET6 Call

inet_aton(&string,&addr) inet_pton (AF_INET6,&src,&dst);

Make the following change to your application, as needed:

● Change the function name from inet_aton() to inet_pton() and provide an integer for
the address family, a pointer to an address string to be converted, and a pointer to a buffer that is to
contain the numeric address.

E.4.4. inet_ntoa() Function
Applications that use the inet_ntoa() function must be changed to use the inet_ntop()
function, as follows:

AF_INET Call AF_INET6 Call

inet_ntoa(addr) inet_ntop(AF_INET6,&src,&dst,size);

Make the following change to your application, as needed:

● Change the function name from inet_ntoa() to inet_ntop() and provide an integer for
the address family, a pointer to a buffer that contains the numeric internet address, a pointer to a
buffer that is to contain the text string, and an integer for the size of the buffer pointed to by the dst
parameter.

E.4.5. inet_addr() Function
Applications that use the inet_addr() function must be changed to use the inet_pton()
function, as follows:

AF_INET Call AF_INET6 Call

result=inet_addr(&string) inet_pton (AF_INET6,&src,&dst);

Make the following change to your application, as needed:

● Change the function name from inet_addr() to inet_pton() and provide an integer for
the address family, a pointer to an address string to be converted, and a pointer to a buffer that is to
contain the numeric address.

E.5. Other Application Changes
In addition to the name changes, you should review your code for specific uses of IP address information
and variables.

E.5.1. Comparing IP Addresses

324

Appendix E. Porting Applications to IPv6

If your application compares IP addresses or tests IP addresses for equality, the in6_addr structure
changes (see in Section E.3.1, "in_addr Structure") will change the comparison of int quantities to a
comparison of structures. This will break the code and cause compiler errors.

Make one of the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

(addr1->s_addr == addr2->s_addr) (memcmp(addr1, addr2, sizeof(struct in6_addr))
== 0)

● Change the equality expression to one that uses the memcmp (memory comparison) function.

AF_INET Code AF_INET6 Code

(addr1->s_addr == addr2->s_addr) IN6_ARE_ADDR_EQUAL(addr1, addr2)

● Change the equality expression to one that uses the IN6_ARE_ADDR_EQUAL macro.

E.5.2. Comparing an IP Address to the Wildcard
Address
If your application compares an IP address to the wildcard address, the in6_addr structure changes
(see Section E.3.1, "in_addr Structure") will change the comparison of int quantities to a comparison of
structures. This will break the code and cause compiler errors.

Make either of the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

(addr->s_addr == INADDR_ANY) IN6_IS_ADDR_UNSPECIFIED(addr)

● Change the equality expression to one that uses the IN6_IS_ADDR_UNSPECIFIED macro.

AF_INET Code AF_INET6 Code

(addr->s_addr == INADDR_ANY) (memcmp(addr, in6addr_any, sizeof(struct
in6_addr)) == 0)

● Change the equality expression to one that uses the memcmp (memory comparison) function.

E.5.3. Using int Data Types to Hold IP Addresses
If your application uses int data types to hold IP addresses, the in6_addr structure changes (see
Section E.3.1, "in_addr Structure") will change the assignment. This will break the code and cause
compiler errors.

Make the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

struct in_addr foo;

int bar;

.

.

struct in6_addr foo;

struct in6_addr bar;

.

.

325

Appendix E. Porting Applications to IPv6

AF_INET Code AF_INET6 Code
.

bar = foo.s_addr;

.

bar = foo;

1. Change the data type for bar from int to a struct in6_addr.

2. Change the assignment statement for bar to remove the s_addr field reference.

E.5.4. Using Functions that Return IP Addresses
If your application uses functions that return IP addresses as int data types, the in6_addr structure
changes (see Section E.3.1, "in_addr Structure") will change the destination of the return value from an
int to an array of char. This will break the code and cause compiler errors.

Make the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

struct in_addr *addr;

addr->s_addr = foo(xxx);

struct in6_addr *addr;

foo(xxx, addr);

● Restructure the function to enable you to pass the address of the structure in the call. In addition,
modify the function to write the return value into the structure pointed to by addr.

E.5.5. Changing Socket Options
If your application uses IPv4 IP-level socket options, change them to the corresponding IPv6 options.

E.6. Sample Client/Server Programs
This section contains sample client and server programs that demonstrate the differences between IPv4
and IPv6 coding conventions:

● Section E.6.1, "Programs Using AF_INET Sockets" contains sample programs using IPv4 AF_INET
sockets.

● Section E.6.2, "Programs Using AF_INET6 Sockets" contains sample programs using IPv6
AF_INET6 sockets.

To build the examples, use the following commands:

$ CC/DEFINE=(_SOCKADDR_LEN)/INCLUDE=TCPIP$EXAMPLES: client.c
$ LINK client, TCPIP$LIBRARY:TCPIP$LIB/LIBRARY

$ CC/DEFINE=(_SOCKADDR_LEN)/INCLUDE=TCPIP$EXAMPLES: server.c
$ LINK server, TCPIP$LIBRARY:TCPIP$LIB/LIBRARY

E.6.1. Programs Using AF_INET Sockets
This section contains a client and a server program that use AF_INET sockets.

E.6.1.1. Client Program

326

Appendix E. Porting Applications to IPv6

The following is a sample client program that you can build, compile and run on your system. The
program sends a request to and receives a response from the system specified on the command line.

#include <in.h> /* define internet related constants,
 */
 /* functions, and structures
 */
#include <inet.h> /* define network address info
 */

#include <netdb.h> /* define network database library info
 */

#include <socket.h> /* define BSD 4.x socket api
 */
#include <stdio.h> /* define standard i/o functions
 */
#include <stdlib.h> /* define standard library functions
 */
#include <string.h> /* define string handling functions
 */

#include <unixio.h> /* define unix i/o
 */

#define BUFSZ 1024 /* user input buffer size
 */
#define SERV_PORTNUM 12345 /* server port number
 */

int main(void); /* client main
 */
void get_serv_addr(void *); /* get server host address
 */

int
main(void)
{
 int sockfd; /* connection socket descriptor
 */

 char buf[512]; /* client data buffer
 */

 struct sockaddr_in serv_addr; /* server socket address structure
 */

 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_port = htons(SERV_PORTNUM);
 get_serv_addr(&serv_addr.sin_addr);

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

327

Appendix E. Porting Applications to IPv6

 printf("Initiated connection to host: %s, port: %d\n",
 inet_ntoa(serv_addr.sin_addr), ntohs(serv_addr.sin_port)
);

 if (connect(sockfd,
 (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
 {
 perror("Failed to connect to server");
 exit(EXIT_FAILURE);
 }

 if (recv(sockfd, buf, sizeof(buf), 0) < 0)
 {
 perror("Failed to read data from server connection");
 exit(EXIT_FAILURE);
 }

 printf("Data received: %s\n", buf); /* output client's data buffer
 */

 if (shutdown(sockfd, 2) < 0)
 {
 perror("Failed to shutdown server connection");
 exit(EXIT_FAILURE);
 }

 if (close(sockfd) < 0)
 {
 perror("Failed to close socket");
 exit(EXIT_FAILURE);
 }

 exit(EXIT_SUCCESS);
}

void
get_serv_addr(void *addrptr)
{
 char buf[BUFSZ]; /* input data buffer */
 struct in_addr val; /* remote host address structure */
 struct hostent *host; /* remote host hostent structure */

 while (TRUE)
 {
 printf("Enter remote host: ");

 if (fgets(buf, sizeof(buf), stdin) == NULL)
 {
 printf("Failed to read User input\n");
 exit(EXIT_FAILURE);
 }

 buf[strlen(buf)-1] = 0;

 val.s_addr = inet_addr(buf);

 if (val.s_addr != INADDR_NONE)
 {

328

Appendix E. Porting Applications to IPv6

 memcpy(addrptr, &val, sizeof(struct in_addr));
 break;
 }

 if ((host = gethostbyname(buf)))
 {
 memcpy(addrptr, host->h_addr, sizeof(struct in_addr));
 break;
 }
 }
}

This example of a client applications sends a request and receives a response on an AF_INET socket.

Function code prototype for server host address/name translation function.

Declares sockaddr_in structure.

Clears the server sockaddr_in structure and sets values for fields of the structure

Calls get_serv_addr passing a pointer to the socket address structure's sin_addr field.

Creates an AF_INET socket

Calls inet_ntoa to convert the server address to a text string.

Calls connect passing a pointer to the sockaddr_in structure.

Retrieves the server host's address from the user and then stores it in the server's socket address
structure. The user can specify a server host by using either an IPv4 address in dotted decimal
notation or a host domain name

Calls gethostbyname() to retrieve the server host's address.

E.6.1.2. Server Program
The following is a sample server program that you can build, compile, and run on your system. The
program receives requests from and sends responses to client programs on other systems.

#include <in.h> /* define internet related constants,
 */
 /* functions, and structures
 */
#include <inet.h> /* define network address info
 */

#include <netdb.h> /* define network database library info
 */

#include <socket.h> /* define BSD 4.x socket api
 */
#include <stdio.h> /* define standard i/o functions
 */
#include <stdlib.h> /* define standard library functions
 */
#include <string.h> /* define string handling functions
 */

329

Appendix E. Porting Applications to IPv6

#include <unixio.h> /* define unix i/o
 */

#define SERV_BACKLOG 1 /* server backlog
 */
#define SERV_PORTNUM 12345 /* server port number
 */

int main(void); /* server main
 */

int
main(void)
{
 int optval = 1; /* SO_REUSEADDR'S option value (on)
 */

 int conn_sockfd; /* connection socket descriptor
 */
 int listen_sockfd; /* listen socket descriptor
 */

 unsigned int client_addrlen; /* returned length of client socket
 */
 /* address structure
 */
 struct sockaddr_in client_addr; /* client socket address structure
 */
 struct sockaddr_in serv_addr; /* server socket address structure
 */

 struct hostent *host; /* host name structure
 */

 char buf[] = "Hello, world!"; /* server data buffer
 */

 memset(&client_addr, 0, sizeof(client_addr));

 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_port = htons(SERV_PORTNUM);
 serv_addr.sin_addr.s_addr = INADDR_ANY;

 if ((listen_sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

 if (setsockopt(listen_sockfd,
 SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) < 0)
 {
 perror("Failed to set socket option");
 exit(EXIT_FAILURE);
 }

 if (bind(listen_sockfd,

330

Appendix E. Porting Applications to IPv6

 (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
 {
 perror("Failed to bind socket");
 exit(EXIT_FAILURE);
 }

 if (listen(listen_sockfd, SERV_BACKLOG) < 0)
 {
 perror("Failed to set socket passive");
 exit(EXIT_FAILURE);
 }

 printf("Waiting for a client connection on port: %d\n",
 ntohs(serv_addr.sin_port)
);

 client_addrlen = sizeof(client_addr);

 conn_sockfd = accept(listen_sockfd,
 (struct sockaddr *) &client_addr,
 &client_addrlen
);
 if (conn_sockfd < 0)
 {
 perror("Failed to accept client connection");
 exit(EXIT_FAILURE);
 }

 host = gethostbyaddr((char *)&client_addr.sin_addr.s_addr,
 sizeof(client_addr.sin_addr.s_addr), AF_INET
);

 if (host == NULL)
 {
 perror("Failed to translate client address\n");
 exit(EXIT_FAILURE);
 }

 printf("Accepted connection from host: %s (%s), port: %d\n",
 host->h_name, inet_ntoa(client_addr.sin_addr),
 ntohs(client_addr.sin_port)
);

 if (send(conn_sockfd, buf, sizeof(buf), 0) < 0)
 {
 perror("Failed to write data to client connection");
 exit(EXIT_FAILURE);
 }

 printf("Data sent: %s\n", buf); /* output server's data buffer */

 if (shutdown(conn_sockfd, 2) < 0)
 {
 perror("Failed to shutdown client connection");
 exit(EXIT_FAILURE);
 }

 if (close(conn_sockfd) < 0)

331

Appendix E. Porting Applications to IPv6

 {
 perror("Failed to close socket");
 exit(EXIT_FAILURE);
 }

 if (close(listen_sockfd) < 0)
 {
 perror("Failed to close socket");
 exit(EXIT_FAILURE);
 }

 exit(EXIT_SUCCESS);
}

This example of a server application sends a request and receives a response on an AF_INET socket.

Declares sockaddr_in structures.

Declares hostent structure.

Clears the server sockaddr_in structure and sets values for fields of the structure.

Creates an AF_INET socket.

Calls gethostbyaddr() to retrieve client name.

E.6.2. Programs Using AF_INET6 Sockets
This section contains a client and a server program that use AF_INET6 sockets.

E.6.2.1. Client Program
The following is a sample client program that you can build, compile, and run on your system. The
program sends a request to and receives a response from the system specified on the command line.

#include <in.h> /* define internet related constants,
 */
 /* functions, and structures
 */
#include <inet.h> /* define network address info
 */

#include <netdb.h> /* define network database library
 info */

#include <socket.h> /* define BSD 4.x socket api
 */
#include <stdio.h> /* define standard i/o functions
 */
#include <stdlib.h> /* define standard library functions
 */
#include <string.h> /* define string handling functions
 */

#include <unixio.h> /* define unix i/o
 */

332

Appendix E. Porting Applications to IPv6

#define BUFSZ 1024 /* user input buffer size
 */
#define SERV_PORTNUM "12345" /* server port number string
 */

int main(void); /* client main
 */
void get_serv_addr(struct addrinfo *hints, struct addrinfo **res);
 /* get server host address
 */

int
main(void)
{
 int sockfd; /* connection socket descriptor
 */

 char buf[512]; /* client data buffer
 */

 struct addrinfo hints; /* input values to direct operation
 */
 struct addrinfo *res; /* linked list of addrinfo structs
 */

 memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_INET6;
 hints.ai_flags = AI_ADDRCONFIG | AI_V4MAPPED | AI_CANONNAME;
 hints.ai_protocol = IPPROTO_TCP;
 hints.ai_socktype = SOCK_STREAM;
 get_serv_addr(&hints, &res);

 if ((sockfd = socket(AF_INET6, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

 printf("Initiated connection to host: %s, port: %d\n",
 res->ai_canonname,
 htons(((struct sockaddr_in6 *)res->ai_addr)->sin6_port));

 if (connect(sockfd, res->ai_addr, res->ai_addrlen) < 0)
 {
 perror("Failed to connect to server");
 exit(EXIT_FAILURE);
 }

 if (recv(sockfd, buf, sizeof(buf), 0) < 0)
 {
 perror("Failed to read data from server connection");
 exit(EXIT_FAILURE);
 }

 printf("Data received: %s\n", buf); /* output client's data buffer
 */

333

Appendix E. Porting Applications to IPv6

 if (shutdown(sockfd, 2) < 0)
 {
 perror("Failed to shutdown server connection");
 exit(EXIT_FAILURE);
 }

 if (close(sockfd) < 0)
 {
 perror("Failed to close socket");
 exit(EXIT_FAILURE);
 }

 exit(EXIT_SUCCESS);
}

void
get_serv_addr(struct addrinfo *hints, struct addrinfo **res)
{
 int gai_error; /* return value of getaddrinfo()
 */
 char buf[BUFSZ]; /* input data buffer
 */
 const char *port = SERV_PORTNUM; /* server port number
 */

 while (TRUE)
 {
 printf("Enter remote host: ");

 if (fgets(buf, sizeof(buf), stdin) == NULL)
 {
 printf("Failed to read User input\n");
 exit(EXIT_FAILURE);
 }

 buf[strlen(buf)-1] = 0;

 gai_error = getaddrinfo(buf, port, hints, res);
 if (gai_error)
 printf("Failed to resolve name or address: %s\n",
 gai_strerror(gai_error)
);
 else
 break;
 }
}

This example of a client application sends a request and receives a response on an AF_INET6 socket.

Function prototype for server host address/name translation function.

Declares addrinfo structures.

Clears the addrinfo structure and sets values for fields of the structure.

Calls get_serv_addr() passing pointers to the input and output addrinfo structures.

Creates an AF_INET6 socket.

334

Appendix E. Porting Applications to IPv6

Uses values from the output addrinfo structure for host name and port.

Calls connect() using values from the output addrinfo structure.

Retrieves the server host's address from the user and stores it in the addrinfo structure. The user
can specify a server host by using any of the following:

• An IPv4 address in dotted-decimal notation

• An IPv6 address in hexadecimal

• An IPv4-mapped IPv6 address in hexadecimal

• A host domain name

Calls getaddrinfo() to retrieve the server host's name or address.

Calls gai_strerror() to convert one of the EAI_xxx return values to a string describing the
error.

E.6.2.2. Server Program
The following is a sample server program that you can build, compile, and run on your system. The
program receives requests from and sends responses to client programs on other systems.

#include <in.h> /* define internet related constants,
 /* functions, and structures
 */
#include <inet.h> /* define network address info
 */

#include <netdb.h> /* define network database library
 info */

#include <socket.h> /* define BSD 4.x socket api
 */
#include <stdio.h> /* define standard i/o functions
 */
#include <stdlib.h> /* define standard library functions
 */
#include <string.h> /* define string handling functions
 */

#include <unixio.h> /* define unix i/o
 */

#define SERV_BACKLOG 1 /* server backlog
 */
#define SERV_PORTNUM 12345 /* server port number
 */

int main(void); /* server main
 */

int
main(void)
{

335

Appendix E. Porting Applications to IPv6

 int optval = 1; /* SO_REUSEADDR'S option value (on)
 */

 int conn_sockfd; /* connection socket descriptor
 */
 int listen_sockfd; /* listen socket descriptor
 */
 int gni_error; /* return status for getnameinfo()
 */

 unsigned int client_addrlen; /* returned length of client socket
 */
 /* address structure
 */
 struct sockaddr_in6 client_addr; /* client socket address structure
 */
 struct sockaddr_in6 serv_addr; /* server socket address structure
 */

 char buf[] = "Hello, world!"; /* server data buffer
 */
 char node[NI_MAXHOST]; /* buffer to receive node name
 */
 char port[NI_MAXHOST]; /* buffer to receive port number
 */
 char addrbuf[INET6_ADDRSTRLEN]; /* buffer to receive host's address
 */

 memset(&client_addr, 0, sizeof(client_addr));

 memset(&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin6_family = AF_INET6;
 serv_addr.sin6_port = htons(SERV_PORTNUM);
 serv_addr.sin6_addr = in6addr_any;

 if ((listen_sockfd = socket(AF_INET6, SOCK_STREAM, 0)) < 0)
 {
 perror("Failed to create socket");
 exit(EXIT_FAILURE);
 }

 if (setsockopt(listen_sockfd,
 SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) < 0)
 {
 perror("Failed to set socket option");
 exit(EXIT_FAILURE);
 }

 if (bind(listen_sockfd,
 (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
 {
 perror("Failed to bind socket");
 exit(EXIT_FAILURE);
 }

 if (listen(listen_sockfd, SERV_BACKLOG) < 0)
 {
 perror("Failed to set socket passive");

336

Appendix E. Porting Applications to IPv6

 exit(EXIT_FAILURE);
 }

 printf("Waiting for a client connection on port: %d\n",
 ntohs(serv_addr.sin6_port)
);

 client_addrlen = sizeof(client_addr);

 conn_sockfd = accept(listen_sockfd,
 (struct sockaddr *) &client_addr,
 &client_addrlen
);
 if (conn_sockfd < 0)
 {
 perror("Failed to accept client connection");
 exit(EXIT_FAILURE);
 }

 gni_error = getnameinfo((struct sockaddr
 *)&client_addr,client_addrlen,
 node, sizeof(node), NULL, 0, NI_NAMEREQD
);
 if (gni_error)
 {
 printf("Failed to translate client address: %s\n",
 gai_strerror(gni_error)
);
 exit(EXIT_FAILURE);
 }

 gni_error = getnameinfo((struct sockaddr *)&client_addr,
 client_addrlen,
 addrbuf, sizeof(addrbuf), port, sizeof(port),
 NI_NUMERICHOST | NI_NUMERICSERV
);
 if (gni_error)
 {
 printf("Failed to translate client address and/or port: %s\n",
 gai_strerror(gni_error)
);
 exit(EXIT_FAILURE);
 }

 printf("Accepted connection from host: %s (%s), port: %s\n",
 node, addrbuf, port
);

 if (send(conn_sockfd, buf, sizeof(buf), 0) < 0)
 {
 perror("Failed to write data to client connection");
 exit(EXIT_FAILURE);
 }

 printf("Data sent: %s\n", buf); /* output server's data buffer
 */

 if (shutdown(conn_sockfd, 2) < 0)

337

Appendix E. Porting Applications to IPv6

 {
 perror("Failed to shutdown client connection");
 exit(EXIT_FAILURE);
 }

 if (close(conn_sockfd) < 0)
 {
 perror("Failed to close socket");
 exit(EXIT_FAILURE);
 }

 if (close(listen_sockfd) < 0)
 {
 perror("Failed to close socket");
 exit(EXIT_FAILURE);
 }

 exit(EXIT_SUCCESS);
}

This example of a server application sends a request and receives a response on an AF_INET6 socket.

Declares variable for getnameinfo() return value

Declares sockaddr_in6 structures

Declares buffers to receive client's name, port number, and address for calls to getnameinfo().

Clears the server sockaddr_in6 structure and sets values for fields of the structure.

Creates an AF_INET6 socket.

Calls getnameinfo() to retrieve client name. This is for message displaying purposes only and
is not necessary for proper functioning of the server.

Calls gai_strerror() to convert one of the EAI_xxx return values to a string describing the
error.

Calls getnameinfo() to retrieve client address and port number. This is for message displaying
purposes only and is not necessary for proper functioning of the server.

E.6.3. Sample Program Output
This section contains sample output from the preceding server and client programs. The server program
makes and receives all requests on an AF_INET6 socket using sockaddr_in6. For requests received
over IPv4, sockaddr_in6 contains an IPv4-mapped IPv6 address.

1. The following example shows a client program running on node hostb6 and sending a request to
node hosta6. The program uses an AF_INET6 socket. The node hosta6 has the IPv6 address
3ffe:1200::a00:2bff:fe97:7be0 in the Domain Name System (BIND/DNS).

$ run client.exe
Enter remote host: hosta6
Initiated connection to host: hosta6.ipv6.corp.example, port: 12345
Data received: Hello, world!
$

338

Appendix E. Porting Applications to IPv6

2. On the server node, the following example shows the server program invocation and the request
received from the client node hostb6:

$ run server.exe
Waiting for a client connection on port: 12345
Accepted connection from host: hostb6.ipv6.corp.example
(3ffe:1200::a00:2bff:fe97:7be0), port: 49174
Data sent: Hello, world!
$

3. The following example shows the client program running on node hostb and sending a request to
node hosta. The program uses an AF_INET6 socket. The hosta node has only an IPv4 address
in the DNS.

$ run client.exe
Enter remote host: hosta
Initiated connection to host: hosta.corp.example, port 12345
Data received: Hello, world!
$

4. On the server node, the following example shows the server program invocation and the request
received from the client node hostb:

$ run server.exe
Waiting for a client connection on port: 12345
Accepted connection from host: hostb.corp.example (::ffff:10.10.10.251),
port: 49175
Data sent: Hello, world!
$

5. The following example shows the client program running on node hostb6 and sending a request
to node hosta6 using its link-local address fe80::a00:2bff:fe97:7be0. The program uses an
AF_INET6 socket.

$ run client.exe
Enter remote host: fe80::a00:2bff:fe97:7be0
Initiated connection to host: fe80::a00:2bff:fe97:7be0, port: 12345
Data received: Hello, world!
$

6. On the server node, the following example shows the server program invocation and the request
received from the client node hostb6.

$ run server.exe
Waiting for a client connection on port: 12345
Accepted connection from host: hosta6.ipv6.corp.example%WE0
(fe80::a00:2bff:fe97:7be0%WE0), port: 49177
Data sent: Hello, world!
$

339

Appendix E. Porting Applications to IPv6

340

	VSI TCP/IP Services for OpenVMS Sockets API and System Services Programming
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documentation
	5. OpenVMS Documentation
	6. VSI Encourages Your Comments
	7. Typographical Conventions

	Chapter 1. Application Programming Interfaces
	1.1. BSD Sockets
	1.2. OpenVMS System Services
	1.3. Application Development Files
	1.3.1. Definition Files
	1.3.2. Libraries
	1.3.3. Programming Examples

	1.4. Compiling and Linking C Language Programs
	1.4.1. Compiling and Linking Programs Using BSD Version 4.4
	1.4.2. VSI C Compilation Warnings

	1.5. Using 64-Bit Addresses (Alpha and I64 Only)

	Chapter 2. Writing Network Applications
	2.1. The Client/Server Communication Process
	2.1.1. Using the TCP Protocol
	2.1.2. Using the UDP Protocol

	2.2. Creating a Socket
	2.2.1. Creating Sockets (Sockets API)
	2.2.2. Creating Sockets (System Services)

	2.3. Binding a Socket (Optional for Clients)
	2.3.1. Binding a Socket (Sockets API)
	2.3.2. Binding a Socket (System Services)

	2.4. Making a Socket a Listener (TCP Protocol)
	2.4.1. Setting a Socket to Listen (Sockets API)
	2.4.2. Setting a Socket to Listen (System Services)

	2.5. Initiating a Connection (TCP Protocol)
	2.5.1. Initiating a Connection (Sockets API)
	2.5.2. Initiating a Connection (System Services)

	2.6. Accepting a Connection (TCP Protocol)
	2.6.1. Accepting a Connection (Sockets API)
	2.6.2. Accepting a Connection (System Services)

	2.7. Getting Socket Options
	2.7.1. Getting Socket Information (Sockets API)
	2.7.2. Getting Socket Information (System Services)

	2.8. Setting Socket Options
	2.8.1. Setting Socket Options (Sockets API)
	2.8.2. Setting Socket Options (System Services)

	2.9. Reading Data
	2.9.1. Reading Data (Sockets API)
	2.9.2. Reading Data (System Services)

	2.10. Receiving IP Multicast Datagrams
	2.11. Reading Out-of-Band Data (TCP Protocol)
	2.11.1. Reading OOB Data (Sockets API)
	2.11.2. Reading OOB Data (System Services)

	2.12. Peeking at Queued Messages
	2.12.1. Peeking at Data (Sockets API)
	2.12.2. Peeking at Data (System Services)

	2.13. Writing Data
	2.13.1. Writing Data (Sockets API)
	2.13.2. Writing Data (System Services)

	2.14. Writing OOB Data (TCP Protocol)
	2.14.1. Writing OOB Data (Sockets API)
	2.14.2. Writing OOB Data (System Services)

	2.15. Sending Datagrams (UDP Protocol)
	2.15.1. Sending Datagrams (System Services)
	2.15.2. Sending Broadcast Datagrams (Sockets API)
	2.15.3. Sending Broadcast Datagrams (System Services)
	2.15.4. Sending Multicast Datagrams

	2.16. Using the Berkeley Internet Name Domain Service
	2.16.1. BIND Lookups (Sockets API)
	2.16.2. BIND Lookups (System Services)

	2.17. Closing and Deleting a Socket
	2.17.1. Closing and Deleting (Sockets API)
	2.17.2. Closing and Deleting (System Services)

	2.18. Shutting Down Sockets
	2.18.1. Shutting Down a Socket (Sockets API)
	2.18.2. Shutting Down a Socket (System Services)

	2.19. Canceling I/O Operations

	Chapter 3. Using the Sockets API
	3.1. Internet Protocols
	3.1.1. TCP Sockets
	3.1.1.1. Wildcard Addressing

	3.1.2. UDP Sockets

	3.2. Structures
	3.2.1. addrinfo Structure
	3.2.2. cmsghdr Structure
	3.2.3. hostent Structure
	3.2.4. in_addr Structure
	3.2.5. in6_addr Structure (IPv6)
	3.2.6. iovec Structure
	3.2.7. linger Structure
	3.2.8. msghdr Structure
	3.2.8.1. BSD Version 4.3
	3.2.8.2. BSD Version 4.4

	3.2.9. netent Structure
	3.2.10. protoent Structure
	3.2.11. servent Structure
	3.2.12. sockaddr Structure
	3.2.12.1. BSD Version 4.3
	3.2.12.2. BSD Version 4.4

	3.2.13. sockaddr_in Structure
	3.2.14. sockaddr_in6 Structure (IPv6)
	3.2.14.1. BSD Version 4.3
	3.2.14.2. BSD Version 4.4

	3.2.15. timeval Structure

	3.3. Header Files
	3.4. Constants and Address Variables (IPv6)
	3.5. Interface Identification (IPv6)
	3.5.1. Sending IPv6 Multicast Datagrams
	3.5.2. Receiving IPv6 Multicast Datagrams
	3.5.3. Address Translation and Conversion Functions
	3.5.4. Address-Testing Macros

	3.6. Advanced API (IPv6)
	3.6.1. Using IPv6 Raw Sockets
	3.6.1.1. Accessing ICMPv6 Messages
	3.6.1.2. Accessing the IPv6 Header
	3.6.1.3. Accessing the IPv6 Routing Header
	3.6.1.4. Accessing the IPv6 Options Headers

	3.7. Calling a Socket Function from an AST State
	3.8. Using 64-Bit Buffer Addresses (Alpha and I64 Only)
	3.9. Standard I/O Functions
	3.10. Guidelines for Compiling and Linking IPv6 Applications
	3.11. Compatibility with the OpenVMS VSI C Run-Time Library
	3.12. Error Checking: errno Values
	3.12.1. errno values
	3.12.2. Relationship Between errno and h_errno

	Chapter 4. Sockets API Reference
	4.1. Summary of Socket Functions
	4.2. Socket API Functions
	accept()
	bind()
	close()
	connect()
	decc$get_sdc()
	decc$socket_fd
	endhostent()
	endnetent()
	endprotoent()
	endservent()
	freeaddrinfo()
	gai_strerror()
	getaddrinfo()
	gethostaddr
	gethostbyaddr()
	gethostbyname()
	gethostbyname_r()
	gethostent()
	gethostname()
	getnameinfo()
	getnetbyaddr()
	getnetbyname()
	getnetent()
	getpeername()
	getprotobyname()
	getprotobynumber()
	getprotoent()
	getservbyname()
	getservbyport()
	getservent()
	getsockname()
	getsockopt()
	herror()
	hostalias()
	hstrerror()
	htonl()
	htons()
	if_freenameindex()
	if_indextoname()
	if_nameindex()
	if_nametoindex()
	inet6_opt_append()
	inet6_opt_find()
	inet6_opt_finish()
	inet6_opt_get_val()
	inet6_opt_init()
	inet6_opt_next()
	inet6_opt_set_val()
	inet6_rth_add()
	inet6_rth_getaddr()
	inet6_rth_init()
	inet6_rth_reverse()
	inet6_rth_segments()
	inet6_rth_space()
	inet_aton()
	inet_lnaof()
	inet_makeaddr()
	inet_netof()
	inet_network()
	inet_ntoa()
	inet_ntop()
	inet_pton()
	ioctl()
	listen()
	ntohl()
	ntohs()
	poll()
	read()
	recv()
	recvfrom()
	recvmsg()
	select()
	send()
	sendmsg()
	sendto()
	sethostent()
	setnetent()
	setprotoent()
	setservent()
	setsockopt()
	shutdown()
	socket()
	socketpair()
	write()

	Chapter 5. Using the $QIO System Service
	5.1. $QIO System Service Variations
	5.2. $QIO Format
	5.2.1. Symbol Definition Files

	5.3. $QIO Functions
	5.4. $QIO Arguments
	5.4.1. $QIO Function-Independent Arguments
	5.4.2. I/O Status Block
	5.4.3. $QIO Function-Dependent Arguments

	5.5. Passing Arguments by Descriptor
	5.5.1. Specifying an Input Parameter List
	5.5.2. Specifying an Output Parameter List
	5.5.3. Specifying a Socket Name
	5.5.4. Specifying a Buffer List

	Chapter 6. OpenVMS System Services Reference
	6.1. System Service Descriptions
	Assign I/O Channel
	Cancel I/O on Channel
	Deassign I/O Channel
	Queue I/O Request

	6.2. Network Pseudodevice Driver I/O Functions
	6.3. Network Pseudodevice Driver I/O Function Codes
	IO$_ACCESS
	IO$_ACCESS|IO$M_ACCEPT
	IO$_ACPCONTROL
	IO$_DEACCESS
	IO$_READVBLK
	IO$_SENSEMODE/IO$_SENSECHAR
	IO$_SETMODE/IO$_SETCHAR
	IO$_SETMODE|IO$M_OUTBAND
	IO$_SETMODE|IO$M_READATTN
	IO$_SETMODE|IO$M_WRTATTN
	IO$_WRITEVBLK

	6.4. TELNET Port Driver I/O Function Codes
	6.4.1. Interface Definition
	6.4.1.1. Item List Codes
	6.4.1.2. Characteristic Mask Bits
	6.4.1.3. Protocol Types
	6.4.1.4. Service Types

	6.4.2. Passing Parameters to the TELNET Port Driver

	6.5. TELNET Port Driver I/O Function Codes
	IO$_TTY_PORT|IO$M_TN_STARTUP
	IO$_TTY_PORT|IO$M_TN_SHUTDOWN

	6.6. Buffered Reading and Writing of Item Lists
	6.7. TELNET Port Driver I/O Function Codes
	IO$_TTY_PORT_BUFIO|IO$M_TN_SENSEMODE
	IO$_TTY_PORT_BUFIO|IO$M_TN_SETMODE

	Appendix A. Socket Options
	Appendix B. IOCTL Requests
	Appendix C. Data Types
	C.1. OpenVMS Data Types
	C.2. C and C++ Implementations

	Appendix D. Error Codes
	Appendix E. Porting Applications to IPv6
	E.1. Using AF_INET6 Sockets
	E.2. Name Changes
	E.3. Structure Changes
	E.3.1. in_addr Structure
	E.3.2. sockaddr Structure
	E.3.3. sockaddr_in Structure
	E.3.4. hostent Structure

	E.4. Function Changes
	E.4.1. gethostbyaddr() Function
	E.4.2. gethostbyname() Function
	E.4.3. inet_aton() Function
	E.4.4. inet_ntoa() Function
	E.4.5. inet_addr() Function

	E.5. Other Application Changes
	E.5.1. Comparing IP Addresses
	E.5.2. Comparing an IP Address to the Wildcard Address
	E.5.3. Using int Data Types to Hold IP Addresses
	E.5.4. Using Functions that Return IP Addresses
	E.5.5. Changing Socket Options

	E.6. Sample Client/Server Programs
	E.6.1. Programs Using AF_INET Sockets
	E.6.1.1. Client Program
	E.6.1.2. Server Program

	E.6.2. Programs Using AF_INET6 Sockets
	E.6.2.1. Client Program
	E.6.2.2. Server Program

	E.6.3. Sample Program Output

