
VSI X.25 for OpenVMS
Programming Reference

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: VSI X.25 for OpenVMS Version 2.1

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA



VSI X.25 for OpenVMS Programming Reference

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group.

ii



VSI X.25 for OpenVMS Programming Reference

Table of Contents
Preface .....................................................................................................................................  v

1. About VSI ......................................................................................................................  v
2. Intended Audience ...........................................................................................................  v
3. Document Structure .........................................................................................................  v
4. Related Documents .........................................................................................................  vi
5. OpenVMS Documentation ............................................................................................  viii
6. VSI Encourages Your Comments ...................................................................................  viii
7. Terminology .................................................................................................................  viii
8. Conventions ...................................................................................................................  ix

Chapter 1. Introduction .........................................................................................................  1
1.1. System Services ............................................................................................................  1

1.1.1. Format of System Service Descriptions ................................................................  2
1.1.2. Syntax Conventions ............................................................................................  2
1.1.3. Common QIO Arguments ...................................................................................  3

1.2. Status Codes Returned at System Service Completion ......................................................  4
1.2.1. Common QIO Return Status Codes .....................................................................  4

Chapter 2. Common System Services ...................................................................................  7
$ASSIGN ............................................................................................................................  7
$CANCEL ..........................................................................................................................  9
$CREMBX .......................................................................................................................  10
$DASSGN ........................................................................................................................  11
$GETDVI .........................................................................................................................  12
$QIO(IO$_ACCESS) .........................................................................................................  14
$QIO(IO$_ACCESS!IO$M_ABORT) .................................................................................  20
$QIO(IO$_ACCESS!IO$M_ACCEPT) ................................................................................  23
$QIO(IO$_ACCESS!IO$M_REDIRECT) ............................................................................  27
$QIO(IO$_ACPCONTROL) ...............................................................................................  30
$QIO(IO$_DEACCESS) ..................................................................................................... 37
$QIO(IO$_READVBLK) ...................................................................................................  40
$QIO(IO$_WRITEVBLK) .................................................................................................  42

Chapter 3. X.25 System Services ......................................................................................... 45
$QIO(IO$_NETCONTROL, PSI$K_INTACK) ....................................................................  45
$QIO(IO$_NETCONTROL, PSI$K_INTERRUPT) .............................................................. 46
$QIO(IO$_NETCONTROL, PSI$K_RESET) ......................................................................  48
$QIO(IO$_NETCONTROL, PSI$K_RESTART) ..................................................................  49

Chapter 4. X.29 System Services ......................................................................................... 51
$QIO(IO$_NETCONTROL, PSI$K_X29_READ) ...............................................................  52
PSI$K_X29_BREAK_ACTION .......................................................................................... 52
PSI$K_X29_HANGUP_PARAMS .....................................................................................  53
PSI$K_X29_HOLD_TIMER ..............................................................................................  54
PSI$K_X29_HOST_ECHO_PARAMS ................................................................................ 55
PSI$K_X29_INT_ACTION ................................................................................................ 56
PSI$K_X29_LOCAL_ECHO_PARAMS .............................................................................  57
PSI$K_X29_PAD_PARAMS .............................................................................................  58
PSI$K_X29_TEMP_NOHANG ..........................................................................................  59
$QIO(IO$_NETCONTROL, PSI$K_X29_READ_SPECIFIC) ..............................................  60
PSI$K_X29_PAD_PARAMS .............................................................................................  61
$QIO(IO$_NETCONTROL, PSI$K_X29_SET) ...................................................................  62

iii



VSI X.25 for OpenVMS Programming Reference

PSI$K_X29_BREAK_ACTION .......................................................................................... 64
PSI$K_X29_HANGUP_PARAMS .....................................................................................  65
PSI$K_X29_HOST_ECHO_PARAMS ................................................................................ 66
PSI$K_X29_HOLD_TIMER ..............................................................................................  67
PSI$K_X29_INT_ACTION ................................................................................................ 68
PSI$K_X29_LOCAL_ECHO_PARAMS .............................................................................  69
PSI$K_X29_PAD_PARAMS .............................................................................................  70
PSI$K_X29_PAD_RESELECTION ....................................................................................  72
PSI$K_X29_TEMP_NOHANG ..........................................................................................  74

Chapter 5. Status Codes Returned at System Service Completion ...................................  75
5.1. Testing the Return Status Code ....................................................................................  76
5.2. Special Return Conditions ............................................................................................ 77

5.2.1. Resource Wait Mode ........................................................................................  77
5.2.2. System Service Failure Exception Mode .............................................................  78

5.3. Obtaining Values for Other Symbolic Codes .................................................................  78
Appendix A. Summary of X.25 System Service Calls .......................................................  79

A.1. System Services for Setting Up and Clearing Communications .......................................  79
A.2. System Services for Handling Incoming Calls ...............................................................  79
A.3. System Services for Handling Control and Data Messages .............................................. 80

Appendix B. Summary of X.29 System Service Calls ........................................................  81
B.1. System Services for Setting Up and Clearing Communication .........................................  81
B.2. System Services for Handling Incoming Calls ...............................................................  81
B.3. System Services for Reading and Setting PAD Parameters and NV Terminal
Characteristics ...................................................................................................................  82
B.4. Terminal Driver Functions ........................................................................................... 83

Appendix C. Network Connect Block (NCB) .....................................................................  85
C.1. Description of the NCB ..............................................................................................  85
C.2. NCB Format ..............................................................................................................  85
C.3. Data Type Format Definitions .....................................................................................  85
C.4. NCB Item Functions ...................................................................................................  85
C.5. NCB Item Descriptions ...............................................................................................  88
C.6. Example NCB ............................................................................................................  94

Appendix D. Mailbox Messages ........................................................................................... 95
D.1. Format ....................................................................................................................... 95
D.2. Mailbox Message Sizes ...............................................................................................  97

Appendix E. Standard PAD Parameters ............................................................................  99
Appendix F. Programming Examples ............................................................................... 105

iv



Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is intended for programmers who perform network operations. The manual assumes that
you have knowledge and experience of the following:

● OpenVMS operating system

● OpenVMS system services

● Packet switching

● DECnet–Plus

● A programming language

The manual also assumes that you have some knowledge of general communications theory, and that
you understand X.25 and PSDN terminology.

3. Document Structure
The manual is divided into five chapters and six appendices:

● Chapter 1 introduces the system services used for X.25 and X.29 programming, and explains the
structure of the reference information.

● Chapter 2 details the system services common to both X.25 and X.29 programming.

● Chapter 3 details the system services specific to X.25 programming.

● Chapter 4 details the system services specific to X.29 programming.

● Chapter 5 describes the status values returned by the system services used for X.25 and X.29
programming.

● Appendix A provides a summary of the format of the X.25 system services.

● Appendix B provides a summary of the format of the X.29 system services.

● Appendix C describes the structure of the Network Connect Block.

● Appendix D provides reference information about mailbox messages.

● Appendix E contains descriptions of the standard PAD parameters.

v



Preface

● Appendix F describes the X.25 and X.29 programming examples that are provided in SYS
$EXAMPLES:.

4. Related Documents
The following sections describe VSI DECnet-Plus for OpenVMS, VSI X.25 for OpenVMS, and VSI
OpenVMS manuals that either directly describe the X.25 for OpenVMS software or provide related
information.

VSI DECnet-Plus for OpenVMS Documentation
The following DECnet-Plus manuals contain information useful to X.25 for OpenVMS managers, users,
and programmers:

● VSI OpenVMS DECnet-Plus Introduction and User's Guide [https://docs.vmssoftware.com/vsi-
openvms-decnet-plus-introduction-and-user-s-guide]

This manual provides general information on DECnet-Plus and describes the concept of packet
switching data networks.

● VSI OpenVMS DECnet-Plus Installation and Configuration [https://docs.vmssoftware.com/vsi-
openvms-decnet-plus-installation-and-configuration]

This manual describes how to install and configure VSI DECnet-Plus for OpenVMS software. For
OpenVMS IA-64 and OpenVMS Alpha systems, this manual also describes how to install X.25
for OpenVMS software. Details on configuring X.25 for OpenVMS on OpenVMS IA-64 and
OpenVMS Alpha systems are provided in the VSI X.25 for OpenVMS Configuration Guide [https://
docs.vmssoftware.com/vsi-x-25-for-openvms-configuration-guide]. For OpenVMS VAX systems,
this manual also describes how to install and configure the X.25 functionality provided by VSI
DECnet-Plus for OpenVMS VAX.

● VSI DECnet-Plus Network Management Guide [https://docs.vmssoftware.com/vsi-decnet-plus-
network-management-guide]

This manual provides conceptual and task information about managing and monitoring a DECnet-
Plus network. In addition, the manual devotes a section to the management of X.25 entities used by
DECnet operating over X.25 data links.

● VSI OpenVMS DECnet-Plus Network Control Language Reference [https://docs.vmssoftware.com/vsi-
openvms-decnet-plus-network-control-language-reference]

This manual provides detailed information on the Network Control Language (NCL), which is used
to manage X.25 for OpenVMS management entities.

VSI X.25 for OpenVMS Documentation
The following manuals make up the X.25 for OpenVMS documentation set:

● VSI X.25 for OpenVMS Configuration Guide [https://docs.vmssoftware.com/vsi-x-25-for-openvms-
configuration-guide] (OpenVMS IA-64 and OpenVMS Alpha)

This manual explains how to configure X.25 for OpenVMS software on OpenVMS IA-64 and
OpenVMS Alpha systems.

vi

https://docs.vmssoftware.com/vsi-openvms-decnet-plus-introduction-and-user-s-guide
https://docs.vmssoftware.com/vsi-openvms-decnet-plus-introduction-and-user-s-guide
https://docs.vmssoftware.com/vsi-openvms-decnet-plus-introduction-and-user-s-guide
https://docs.vmssoftware.com/vsi-openvms-decnet-plus-installation-and-configuration
https://docs.vmssoftware.com/vsi-openvms-decnet-plus-installation-and-configuration
https://docs.vmssoftware.com/vsi-openvms-decnet-plus-installation-and-configuration
https://docs.vmssoftware.com/vsi-x-25-for-openvms-configuration-guide
https://docs.vmssoftware.com/vsi-x-25-for-openvms-configuration-guide
https://docs.vmssoftware.com/vsi-x-25-for-openvms-configuration-guide
https://docs.vmssoftware.com/vsi-decnet-plus-network-management-guide
https://docs.vmssoftware.com/vsi-decnet-plus-network-management-guide
https://docs.vmssoftware.com/vsi-decnet-plus-network-management-guide
https://docs.vmssoftware.com/vsi-openvms-decnet-plus-network-control-language-reference
https://docs.vmssoftware.com/vsi-openvms-decnet-plus-network-control-language-reference
https://docs.vmssoftware.com/vsi-openvms-decnet-plus-network-control-language-reference
https://docs.vmssoftware.com/vsi-x-25-for-openvms-configuration-guide
https://docs.vmssoftware.com/vsi-x-25-for-openvms-configuration-guide
https://docs.vmssoftware.com/vsi-x-25-for-openvms-configuration-guide


Preface

● VSI X.25 for OpenVMS Security Guide

This manual describes the X.25 Security model and how to set up, manage, and monitor X.25
Security to protect your X.25 for OpenVMS system from unauthorized incoming and outgoing calls.

● VSI X.25 for OpenVMS Problem Solving Guide [https://docs.vmssoftware.com/vsi-x-25-for-openvms-
problem-solving-guide]

This manual provides guidance on how to analyze and correct X.25–related and X.29–related
problems that may occur while using the X.25 for OpenVMS software. In addition, the manual
describes loopback testing for LAPB data links.

● VSI X.25 for OpenVMS Programming Guide

This manual describes how to write X.25 and X.29 programs to perform network operations.

● VSI X.25 for OpenVMS Programming Reference

This manual provides reference information for X.25 and X.29 programmers. It is a companion
manual to the VSI X.25 for OpenVMS Programming.

● VSI X.25 for OpenVMS Accounting

This manual describes how to use X.25 Accounting to obtain performance records and information
on how X.25 is being used on your system.

● VSI X.25 for OpenVMS Installation Guide [https://docs.vmssoftware.com/vsi-x-25-for-openvms-
installation-guide/]

This manual describes how to install VSI X.25 for OpenVMS V2.1 HPE servers running the
OpenVMS operating system. This guide is intended for system managers who are responsible for
installing VSI X.25 for OpenVMS V2.1.

● VSI X.25 for OpenVMS Management Guide [https://docs.vmssoftware.com/vsi-x-25-management-
guide/]

This manual provides information applicable to the X.25 functionality provided by VSI X.25 for
OpenVMS and VSI DECnet-Plus for OpenVMS VAX.

● VSI X.25 for OpenVMS Utilities Guide

This manual describes how to use and manage X.25 Mail and how to use and manage a host–based
PAD to connect to a remote system. It also describes how to manage the X.29 communication
links used for both of these functions. In addition, this manual explains how to use OpenVMS DCL
SET TERMINAL/X29 commands to manage remote host–based or network PADs.

VSI OpenVMS Documentation
The following OpenVMS manuals contain information useful to X.25 for OpenVMS managers, users,
and programmers:

● VSI OpenVMS User's Manual [https://docs.vmssoftware.com/vsi-openvms-user-s-manual/].

● VSI OpenVMS DCL Dictionary Part One [https://docs.vmssoftware.com/vsi-openvms-dcl-dictionary-
a-m] and Part Two [https://docs.vmssoftware.com/vsi-openvms-dcl-dictionary-n-z].

vii

https://docs.vmssoftware.com/vsi-x-25-for-openvms-problem-solving-guide
https://docs.vmssoftware.com/vsi-x-25-for-openvms-problem-solving-guide
https://docs.vmssoftware.com/vsi-x-25-for-openvms-problem-solving-guide
https://docs.vmssoftware.com/vsi-x-25-for-openvms-installation-guide/
https://docs.vmssoftware.com/vsi-x-25-for-openvms-installation-guide/
https://docs.vmssoftware.com/vsi-x-25-for-openvms-installation-guide/
https://docs.vmssoftware.com/vsi-x-25-management-guide/
https://docs.vmssoftware.com/vsi-x-25-management-guide/
https://docs.vmssoftware.com/vsi-x-25-management-guide/
https://docs.vmssoftware.com/vsi-openvms-user-s-manual/
https://docs.vmssoftware.com/vsi-openvms-user-s-manual/
https://docs.vmssoftware.com/vsi-openvms-dcl-dictionary-a-m
https://docs.vmssoftware.com/vsi-openvms-dcl-dictionary-a-m
https://docs.vmssoftware.com/vsi-openvms-dcl-dictionary-a-m
https://docs.vmssoftware.com/vsi-openvms-dcl-dictionary-n-z
https://docs.vmssoftware.com/vsi-openvms-dcl-dictionary-n-z


Preface

● VSI OpenVMS System Management Utilities Reference Manual, Volume I [https://
docs.vmssoftware.com/vsi-openvms-system-management-utilities-reference-manual-volume-i-a-l]
and Volume II [https://docs.vmssoftware.com/vsi-openvms-system-management-utilities-reference-
manual-volume-ii-m-z].

● HP OpenVMS System Services Reference Manual Part One [https://docs.vmssoftware.com/vsi-
openvms-system-services-reference-manual-a-getuai/] and Part Two [https://docs.vmssoftware.com/
vsi-openvms-system-services-reference-manual-getutc-z/].

● VSI OpenVMS Guide to System Security [https://docs.vmssoftware.com/vsi-openvms-guide-to-
system-security].

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. Terminology
The terminology used in the VAX P.S.I. product has been replaced by the terminology used in the X.25
for OpenVMS product. Table 1 shows the correlation between VAX P.S.I. terms and their X.25 for
OpenVMS counterparts.

Table 1. X.25 Terminology

VAX P.S.I. X.25 for OpenVMS

VAX P.S.I. X.25 for OpenVMS VAX
Access system X.25 Client system
Native system X.25 Direct Connect system
Multihost system X.25 Connector system
Gateway system X.25 Connector system

In addition to the terms shown in the previous table, the X.25 for OpenVMS documentation set uses the
following standard terms for client systems, server systems, relay systems, and the X.25 for OpenVMS
management entities that represent these systems:

Table 2. X.25 for OpenVMS Client/Server Terminology

Client system A client system of an X.25 Connector system (and therefore a client
of the X25 Server management module on the X.25 Connector
system.)

Relay Client system A client system of an X.25 Relay system (and therefore a client of
the X25 Relay management module on the X.25 Relay system.)

viii

https://docs.vmssoftware.com/vsi-openvms-system-management-utilities-reference-manual-volume-i-a-l
https://docs.vmssoftware.com/vsi-openvms-system-management-utilities-reference-manual-volume-i-a-l
https://docs.vmssoftware.com/vsi-openvms-system-management-utilities-reference-manual-volume-i-a-l
https://docs.vmssoftware.com/vsi-openvms-system-management-utilities-reference-manual-volume-ii-m-z
https://docs.vmssoftware.com/vsi-openvms-system-management-utilities-reference-manual-volume-ii-m-z
https://docs.vmssoftware.com/vsi-openvms-system-management-utilities-reference-manual-volume-ii-m-z
https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-a-getuai/
https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-a-getuai/
https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-a-getuai/
https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-getutc-z/
https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-getutc-z/
https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-getutc-z/
https://docs.vmssoftware.com/vsi-openvms-guide-to-system-security
https://docs.vmssoftware.com/vsi-openvms-guide-to-system-security
https://docs.vmssoftware.com/vsi-openvms-guide-to-system-security
https://docs.vmssoftware.com


Preface

Relay–Client A shorthand term for an X25 RELAY CLIENT management entity
on an X.25 Relay system that contains management information
about an actual Relay Client system.

Relay system An X.25 Direct Connect or Connector system with the X.25 Relay
module enabled.

Server Client system Another term for a Client system.
Server–Client A shorthand term for an X25 SERVER CLIENT management entity

on an X.25 Connector system that contains management information
about one or more actual X.25 Client systems.

For more information about clients, servers, and relays in X.25 for OpenVMS, refer to the VSI X.25 for
OpenVMS Configuration Guide [https://docs.vmssoftware.com/vsi-x-25-for-openvms-configuration-
guide] and the VSI X.25 for OpenVMS Management Guide [https://docs.vmssoftware.com/vsi-x-25-
management-guide].

8. Conventions
The following conventions are used in the X.25 for OpenVMS documentation set:

Convention Meaning

UPPERCASE and lowercase The OpenVMS operating system does not differentiate between
lowercase and uppercase characters. Literal strings that appear in
text, examples, syntax descriptions, and function descriptions can
be entered using uppercase characters, lowercase characters, or a
combination of both.

In running text, uppercase characters indicate OpenVMS DCL
commands and command qualifiers; Network Control Language
(NCL) commands and command parameters; other product–specific
commands and command parameters; network management entities;
OpenVMS system logical names; and OpenVMS system service
calls, parameters, and item codes.

Leading uppercase characters, such as Protocol State, indicate
management entity characteristics and management entity event
names. Leading uppercase characters are also used for the top-level
management entities known as modules.

system output This typeface is used in interactive and code examples to indicate
system output. In running text, this typeface is used to indicate the
exact name of a device, directory, or file; the name of an instance
of a network management entity; or an example value assigned to a
DCL qualifier or NCL command parameter.

user input In interactive examples, user input is shown in bold
monospaced print.

$ In this manual, a dollar sign ($) is used to represent the default
OpenVMS user prompt.

Ctrl/x In procedures, a sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a pointing
device button.

ix

https://docs.vmssoftware.com/vsi-x-25-for-openvms-configuration-guide
https://docs.vmssoftware.com/vsi-x-25-for-openvms-configuration-guide
https://docs.vmssoftware.com/vsi-x-25-for-openvms-configuration-guide
https://docs.vmssoftware.com/vsi-x-25-for-openvms-configuration-guide
https://docs.vmssoftware.com/vsi-x-25-management-guide
https://docs.vmssoftware.com/vsi-x-25-management-guide
https://docs.vmssoftware.com/vsi-x-25-management-guide


Preface

Convention Meaning

Return In procedures, a key name is shown enclosed to indicate that you
press the corresponding key on the keyboard.

italic text Italic text indicates variables or book names. Variables include
information that varies in system input and output. In discussions
of event messages, italic text indicates a possible value of an event
argument.

bold text Bold text indicates an important term or important information.
( ) In a command definition, parenthesis indicate that you must enclose

the options in parenthesis if you choose more than one. Separate the
options using commas.

{ } In a command definition, braces are used to enclose sets of values.
The braces are a required part of the command syntax.

[ ] In a command definition, square brackets are used to enclose parts
of the command that are optional. You can choose one, none, or all
of the options. The brackets are not part of the command syntax.
However, brackets are a required syntax element when specifying a
directory name in an OpenVMS file specification.

x



Chapter 1. Introduction
X.25 for OpenVMS provides a set of system services for you to communicate with a remote DTE.

This chapter introduces you to the available system services, the format of the system service
descriptions in this manual, and the syntax conventions used.

1.1. System Services
Table 1.1 summarizes the system services that can be used for X.25 and X.29 programming. Details of
each system service are given in the following sections:

● Chapter 2 details the system services common to both X.25 and X.29 programming.

● Chapter 3 details the system services specific to X.25 programming.

● Chapter 4 details the system services specific to X.29 programming.

Note

All constants in the program header files associated with the system services are defined in lowercase.

Example X.25 and X.29 programs are provided in the SYS$EXAMPLES: directory. Appendix F
describes the available example programs.

Table 1.1. System Services

System Service Description

Services Common to X.25 and X.29 Programming (Refer to Chapter 2)
$ASSIGN Assigns a Channel
$CANCEL Clears a Virtual Call on a Channel
$CREMBX Creates a Mailbox and Assigns a Channel
$DASSGN Deassigns the Channel
$GETDVI Gets the NV Device Number or Remote DTE

Address
$QIO(IO$_ACCESS) Sets Up a Virtual Circuit
$QIO(IO$_ACCESS!IO$M_ABORT) Rejects a Call
$QIO(IO$_ACCESS!IO$M_ACCEPT) Accepts a Call
$QIO(IO$_ACCESS!IO$M_REDIRECT) Redirects a Call
$QIO(IO$_ACPCONTROL) Declares a Network Process
$QIO(IO$_DEACCESS) Clears a Virtual Circuit
$QIO(IO$_READVBLK) Receives Data
$QIO(IO$_WRITEVBLK) Transmits Data
Services Specific to X.25 Programming (Refer to Chapter 3)
$QIO(IO$_NETCONTROL, PSI$K_INTACK) Confirms Receipt of an Interrupt
$QIO(IO$_NETCONTROL, PSI
$K_INTERRUPT)

Transmits an Interrupt

1



Chapter 1. Introduction

System Service Description

$QIO(IO$_NETCONTROL, PSI$K_RESET) Resets a Virtual Circuit or Confirms Receipt of a
Reset

$QIO(IO$_NETCONTROL, PSI$K_RESTART) Confirms Receipt of a Restart
Services Specific to X.29 Programming (Refer to Chapter 4)
$QIO(IO$_NETCONTROL, PSI$K_X29_READ) Reads X.29 Terminal Characteristics
$QIO(IO$_NETCONTROL, PSI
$K_X29_READ_SPECIFIC)

Reads Specific X.29 Parameters

$QIO(IO$_NETCONTROL, PSI$K_X29_SET) Sets X.29 Terminal Characteristics

1.1.1. Format of System Service Descriptions
In Chapter 2, Chapter 3, and Chapter 4, the system services are arranged in alphabetical order. Each
system service description contains an outline of the function of the service, plus the following items,
where applicable:

Format

Shows the macro name, with all keyword arguments listed in order of position.

Arguments

Describes the arguments. Arguments which are unique to X.25 or X.29 operation are described for
each system service. Arguments which are common for all calls are described in Section 1.1.3.

NCB Contents

Lists the mandatory, optional, and ignored items contained in the Network Connect Block (NCB).
Ignored items are those ignored by the X.25 for OpenVMS software. If you include other items in
the NCB, an error is reported.

Examples

Shows the system service with arguments completed in MACRO–style code. These examples
are very general and you are recommended to refer to your programming language manual for
specific details of implementing the system service. Example programs are provided in the SYS
$EXAMPLES: directory. Refer to Appendix F.

Return Status

Lists those status codes returned by the service that apply to X.25 for OpenVMS, and explains what
the return status codes mean. Common status codes that may be returned are listed in Section 1.2.1.

Note

In Chapter 2, Chapter 3, and Chapter 4, notes that are referred to in the text and tables are presented at
the end of the system service to which they refer.

1.1.2. Syntax Conventions
The following conventions are used in this manual to describe the syntax of the system services.

2



Chapter 1. Introduction

● A character is one of the set of alphanumerics that includes:

○ A to Z

○ a to z

○ 0 to 9

○ _ (underscore)

○ $ (dollar)

● All system service names are in UPPERCASE letters, and you must enter these as shown. Arguments
are in italics, and you must replace the argument shown in the system service format with the precise
information requested.

● Square brackets [ ] enclose optional keywords and arguments. Do not include the brackets when
entering the system service.

● You must enter punctuation such as commas and parentheses ( ) as shown in the format. Use
consecutive commas to indicate omitted arguments; you can omit commas indicating optional
arguments at the end of a system service macro.

1.1.3. Common QIO Arguments
Only those arguments which are unique to X.25 or X.29 operations are described for each system
service. The arguments listed below are common to all system services, and always have the values
shown here:

efn

Number of the event flag to be set at request completion. If not specified, the default is 0.

When QIO begins execution, it clears the specified event flag. The event flag is set even if the
service terminates without queuing an I/O request.

chan

I/O channel that is assigned to the device to which the request is directed. The chan argument is a
word value containing the number of the I/O channel.

iosb

I/O status block to receive the final completion status of the I/O operation. iosb is the address of the
quadword I/O status block (see below).

astadr

AST service routine to be executed when the I/O completes. The astadr argument is the address of
a longword value that is the entry mask to the AST routine. The AST routine executes at the access
mode of the caller of QIO.

astprm

AST parameter to be passed to the AST service routine. The astprm argument is a longword value
containing the AST parameter.

3



Chapter 1. Introduction

For example, for a QIO with the following format, the Arguments  section of the system service
description describes only the argument func, and parameters p1 to p6:

$QIO efn,chan,func,iosb,astadr,astprm,p1, p2,p3,p4,p5,p6

The other arguments have the values given in the preceding table.

1.2. Status Codes Returned at System Service
Completion
When you request a system service, the status returned to Register 0 (R0) indicates only whether the
request was queued successfully. To check whether a system service has completed successfully, your
program should also examine the first word of the I/O Status Block (IOSB). There may be further status
information in words 2 and 3. Refer to Table 5.1.

For further information about return status codes, refer to Chapter 5.

1.2.1. Common QIO Return Status Codes
Only those return status codes that are unique to X.25 or X.29 operations are described for each system
service. Unless they are described as having a meaning specific to X.25 for OpenVMS, status codes have
the meanings given below. The status codes are listed in alphabetical order.

Three of the error codes are severe. They indicate an immediate failure, because OpenVMS cannot
process your system service call. These errors are indicated by the following status codes:

SS$_ACCVIO

Either of the following:

● The argument list, device, mailbox name string, string descriptor, buffer, or IOSB cannot be read
by the caller.

● The channel number, buffer, or IOSB cannot be written by the caller. If the argument list cannot
be read by the caller (using the $name _G form), the service is not called. This is a particular
meaning of SS$_ACCVIO. It is different from the meaning listed for many individual system
services, in which the service is called, but one or more specific arguments are addresses that
cannot be read or written by the caller.

SS$_ILLSER

An illegal system service was called.

SS$_INSFARG

Not enough arguments were supplied to the service.

In addition to the above status codes, and the codes that apply specifically to X.25 for OpenVMS
described with each service, the services may return one or more of the following codes:

SS$_ABORT

PSDN, DECnet or X.25 for OpenVMS software failed during request processing.

4



Chapter 1. Introduction

SS$_BADPARAM

One or more of the parameters p1 to p6 is not valid for this QIO.

SS$_CANCEL

A $CANCEL service was issued for this channel while the request was being processed.

SS$_EXQUOTA

The process does not have sufficient buffered I/O quota or other resources to complete the request.

SS$_ILLEFC

An illegal event flag number was specified.

SS$_ILLIOFUNC

The function code was illegal, or had illegal or conflicting modifier bits set.

SS$_INSFMEM

There is insufficient system dynamic memory to complete the request.

SS$_IVBUFLEN

The format of the NCB item–list is invalid. SS$_IVCHAN An invalid channel number was
specified.

SS$_NOPRIV

The process does not have the privileges required for this function.

SS$_NORMAL

Service completed successfully.

SS$_UNASEFC

The process is not associated with the cluster containing the specified event flag.

For more information on return status codes, refer to the OpenVMS system services documentation.

5



Chapter 1. Introduction

6



Chapter 2. Common System
Services
Table 2.1 summarizes the system services common to both X.25 and X.29 programming.

Table 2.1. Common System Services

System Service Description

$ASSIGN Assigns a Channel
$CANCEL Clears a Virtual Call on a Channel
$CREMBX Creates a Mailbox and Assigns a Channel
$DASSGN Deassigns the Channel
$GETDVI Gets the NV Device Number or Remote DTE

Address
$QIO(IO$_ACCESS) Sets Up a Virtual Circuit
$QIO(IO$_ACCESS!IO$M_ABORT) Rejects a Call
$QIO(IO$_ACCESS!IO$M_ACCEPT) Accepts a Call
$QIO(IO$_ACCESS!IO$M_REDIRECT) Redirects a Call
$QIO(IO$_ACPCONTROL) Declares a Network Process
$QIO(IO$_DEACCESS) Clears a Virtual Circuit
$QIO(IO$_READVBLK) Receives Data
$QIO(IO$_WRITEVBLK) Transmits Data

$ASSIGN
$ASSIGN — Assign a Channel

Purpose
$ASSIGN obtains a channel number, and associates a (previously created) mailbox with the channel.

In X.25 programs, you use $ASSIGN to assign a channel to the NW device.

In an X.29 program, you use $ASSIGN to assign a channel to the NW device or to the NV device.

When your program attempts to assign a channel to NWA0: or NVA0: X.25 for OpenVMS creates a
new device called NWAuu:  or NVAuu: (where uu is a unique unit number), and assigns the channel to
that device. $ASSIGN never assigns a channel to NWA0: or NVA0: .

You will use the number allocated to the NW device in all QIOs which communicate with a remote
DTE. In X.29 programs, you will need to supply the number of the NV device as the p6 parameter in
all QIO calls to the NW device. Use $GETDVI to discover the unit number allocated to the NV or NW
device.

Note that your program must assign only one channel for each virtual circuit to the NWAuu device.

7



Chapter 2. Common System Services

In X.25 programs, for a Permanent Virtual Circuit (PVC) you assign a channel to the device NWA0:
(exactly as for an SVC), and then specify the name of the PVC in the NCB for the $QIO(IO$_ACCESS)
service.

Format
$ASSIGN devnam,chan,[acmode],[mbxnam]

Arguments
devnam Address of a quadword character string descriptor pointing to the device name

string.

For X.25 programs, the character string contains NWA0: or a logical name for
NWA0: .

For X.29 programs, the character string contains either NWA0: or NVA0:, or a
logical name definition for either.

chan Address of a word to receive the channel number assigned.
acmode Access mode to be associated with the channel. The specified access mode

must be an access mode less privileged than, or equal in privilege to, the access
mode from which the service was called. The channel allows I/O operations
only from equally privileged, or more privileged, access modes.

mbxnam Address of a quadword character string descriptor pointing to the logical
name string for the mailbox, if required, to be associated with the channel. An
address of 0 implies no mailbox; this is the default value. This mailbox remains
associated with the channel until you delete the mailbox or deassign the channel
($DASSGN).

Example
In the following example, the device name is referred to by PSI_DEV. The channel to the network
device is placed in PSI_CHAN. A mailbox, MBX, is assigned to this channel. No access mode is
specified.

;Declaring the data:
PSI_DEV:
         .ASCID  /_NWA0:/     ; Network device name
PSI_CHAN:
         .BLKW   1            ; Mailbox channel
MBX:
         .ASCID  /SYS$NET/    ; Mailbox logical name
; Using the System Service:
$ASSIGN_S -                   ; Assign a channel
          DEVNAM = PSI_DEV,-  ; to network device
          CHAN = PSI_CHAN,-   ; Channel number
          MBXNAM = MBX        ; Mailbox name

Return Status
SS$_NORMAL Service successfully completed, a channel has been assigned.
SS$_IVDEVNAM Either no device name was specified, or either the device name or

the mailbox name string contains invalid characters.

8



Chapter 2. Common System Services

SS$_IVLOGNAM The device name or mailbox name string has a length of 0 or has
more than 63 characters.

SS$_NOIOCHAN No channel is available for assignment.
SS$_NOSUCHDEV The specified device or mailbox does not exist.

$CANCEL
$CANCEL — Clear a Virtual Call on a Channel

Purpose
The $CANCEL system service cancels all pending I/O requests on the specified channel. This has the
effect of clearing the virtual call in progress on the channel.

You can cancel I/O requests only from an access mode equal to, or more privileged than, the access
mode from which you originally assigned the channel.

When a request currently in progress is canceled, the driver is notified immediately. The action taken for
I/O requests in progress is similar to that taken for queued requests:

● The specified event flag is set.

● The first word of the IOSB, if specified, is set to SS$_CANCEL if the I/O request is queued or to SS
$_ABORT if the I/O request is in progress.

● The AST, if specified, is queued.

Outstanding I/O requests are automatically canceled at image exit.

Format
$CANCEL chan

Arguments
chan Number of the I/O channel on which I/O is to be cancelled.

Example
In this example, the call cancels all pending I/O requests to the network device on channel PSI_CHAN.

; Declaring the data:
PSI_CHAN:
         .BLKW   1             ; Mailbox channel
; Using the System Service
$CANCEL_S -                    ; Cancel I/O requests
          CHAN = PSI_CHAN      ; on channel

Return Status
SS$_NORMAL Service successfully completed, I/O has been cancelled on the

specified I/O channel.

9



Chapter 2. Common System Services

SS$_EXQUOTA Process does not have sufficient buffered I/O quota and has disabled
resource wait mode.

SS$_NOPRIV The specified channel is not assigned, or was assigned from a more
privileged access mode.

$CREMBX
$CREMBX — Create a Mailbox and Assign a Channel

Purpose
$CREMBX creates a virtual mailbox device named MBAuu:, and assigns an I/O channel to it.

The system provides the unit number, uu , when it creates the mailbox MBAuu:. If a mailbox with the
specified name already exists, $CREMBX assigns a channel to the that mailbox. It should not however
be used to create a channel to the mailbox SYS$NET as $CREMBX does not recognize SYS$NET as
an existing mailbox.

Format
$CREMBX [prmflg],chan,[maxmsg],[bufquo],[promsk],[acmode], [lognam]

Arguments
prmflg Specifies whether the mailbox is to be permanent or temporary. This argument

is a longword value: 1 for permanent; 0 for temporary.
chan Address of a word to receive the channel number assigned.
maxmsg Maximum size (in bytes) of a message that can be sent to the mailbox. If not

specified, or specified as 0, OpenVMS provides a default value.
bufquo Number of bytes of system dynamic memory that can be used to buffer

messages sent to the mailbox. This argument is a longword value. For a
temporary mailbox, the value must be less than or equal to the buffer quota of
the process. OpenVMS provides a default value.

promsk Protection mask, specified by a longword value. Cleared bits grant access to
four types of user: world, group, owner, and system. If promsk is not specified,
access is granted to all users.

acmode A longword containing one of the four access modes defined by the $PSIDEF
macro.

lognam The address of a character string descriptor pointing to a logical name string to
be assigned to the mailbox.

Example
In this example $CREMBX is used to create a network device mailbox and assign the network channel
MBX_CHAN.

MBX_CHAN:
  .BLKW  1                      ; Channel to mailbox
MBX_NAME:
  .ASCID  /X29_MBX/             ; Mailbox name

10



Chapter 2. Common System Services

;+
; Create network device mailbox and assign network channel.
;-
  $CREMBX_S -                   ; Create mailbox
    CHAN = MBX_CHAN,-           ; channel
    LOGNAM = MBX_NAME           ; logical name
  BSBW ERROR                    ; Check for error

Return Status
SS$_NORMAL Service completed successfully.
SS$_BADPARAM The bufquo argument specified too large a value.
SS$_IVSTSFLG Undefined bit set in the prmflg argument. This argument must have a

value of 1 or 0.
SS$_NOIOCHAN No channel is available for assignment.
SS$_NOPRIV The process does not have the privilege to create this type of

mailbox.

$DASSGN
$DASSGN — Deassign the Channel

Purpose
$DASSGN deassigns the logical channel to an NV or NW device.

For channels assigned to NV devices, $DASSGN takes the following action:

● If the channel is the only one assigned to NVAuu:, the terminal characteristic /HANGUP is set and
PSI$K_X29_TEMP_NOHANG is not set, the channel is released, and the circuit is cleared.

● If the channel is the last one assigned to NVAuu:, the terminal characteristic /TYPEAHEAD is
set and PSI$K_X29_TEMP_NOHANG is set, OpenVMS begins the login sequence at the X.29
terminal.

Format
$DASSGN chan

Arguments
chan Number of the channel to be deassigned.

Example
In the following example, channel PSI_CHAN is deassigned.

; Declaring the data:
PSI_CHAN:
           .BLKW   1             ; Mailbox channel
; Using the System Service:
$DASSGN_S -                      ; Deassign channel
          CHAN = PSI_CHAN        ; to network device

11



Chapter 2. Common System Services

Return Status
SS$_NORMAL Service completed successfully, channel has been deassigned.
SS$_NOPRIV The specified channel is not assigned, or was assigned from a more

privileged access mode.

$GETDVI
$GETDVI — Get NV Device Number or Remote DTE Address

Purpose
In X.25 programs, you can use $GETDVI to obtain the NW unit number (see the section called
“$GETDVI - Get NW or NV Unit Number”).

In X.29 programs, you can use $GETDVI to:

● Obtain the NW unit number (see the section called “$GETDVI - Get NW or NV Unit Number”).

● Obtain the NV unit number (see the section called “$GETDVI - Get NW or NV Unit Number”).

● Obtain the remote DTE address (see the section called “$GETDVI - Get Remote DTE Address of
PAD Connected to NV”).

$GETDVI - Get NW or NV Unit Number
Purpose
$GETDVI obtains the unit number allocated by the NW or NV device driver.

The NV unit number is important in X.29 programs, because you need to supply the NV unit number as
the p6 parameter in any QIO request to NWA0:  (the X.25 network device).

For details of how to connect an NV device to a VT device, see the VSI X.25 for OpenVMS
Programming Guide.

Format
$GETDVI [efn],[chan],[devnam],itmlst,[iosb],[astadr], [astprm],nullarg

Arguments
chan Number of the channel assigned to the NW or NV device.
itmlst Address of a descriptor block returning the unit number of the NW or NV

device. Specify DVI$_UNIT as the item code.

Example
In the following example, $GETDVI gets the unit number of the NV device, and returns it in the item–
list UNIT_LIST.

NV_CHAN:
  .BLKW  1                      ; Channel to NV

12



Chapter 2. Common System Services

UNIT_LIST:
  .WORD  4                      ; length (in bytes) of buffer
                                ; for $GETDVI to output
  .WORD  DVI$_UNIT              ; item code
  .LONG  NV_UNIT                ; Address of buffer for $GETDVI
                                ; to output
  .LONG  NV_UNIT_LENGTH         ; Address of word for $GETDVI
                                ; to put the amount of data output
  .LONG 0                       ; End of the item-list
IO_STATUS:
  .BLKW 4                       ;I/O Status block
;+
; Get the unit number of the NV device.
;-
  $GETDVIW_S -                  ; Use this routine to convert
    -                           ; the channel number given to
    -                           ; a unit number.
    CHAN = NV_CHAN,-            ; channel
    ITMLST = UNIT_LIST          ; Address of item-list of information.
    -                           ; wanted from system service.
    IOSB = IO_STATUS            ; Status return
  BSBW ERROR                    ; Check for error

Return Status
SS$_NORMAL Service completed successfully.

$GETDVI - Get Remote DTE Address of PAD Connected
to NV
Purpose
In X.29 programs, you can use $GETDVI to return a string containing the remote DTE address of the
calling PAD and the name of the local DTE class that the call was received on.

The remote DTE will only be returned if the PSDN provided the remote DTE address in the CALL
packet. The local DTE class is always returned. The format of the returned string is:

dte-class.remote-dte-address

Format
$GETDVI [efn],[chan],[devnam],itmlst,[iosb],[astadr], [astprm],nullarg

Arguments
chan Number of the channel assigned to the NV device.
itmlst Address of a descriptor block returning the local DTE class and the

remote DTE address of the PAD for the NV device. Specify DVI
$_TT_ACCPORNAM as the item code.

Example
In this example, $GETDVI gets the remote DTE address of the PAD, and returns it in the item–list
REMDTE_LIST.

13



Chapter 2. Common System Services

PAD_REMDTE_LENGTH: .blkw 1      ; Length of returned string
PAD_REMDTE:    .BLKB 64         ; Storage To hold the remote DTE address in
NV_CHAN:
  .BLKW  1                      ; Channel to NV
REMDTE_LIST:
  .WORD  64                     ; length (in bytes) of buffer
                                ; for $GETDVI to output
  .WORD  DVI$_TT_ACCPORNAM      ; item code
  .LONG  PAD_REMDTE             ; Address of buffer for $GETDVI
                                ; to output
  .LONG  PAD_REMDTE_LENGTH      ; Address of word for $GETDVI
                                ; to put the amount of data output
  .LONG  0                      ; End of the item-list
IO_STATUS:
  .BLKW  4                      ;I/O Status block
;+
; Get the remote DTE address of the PAD
;-
  $GETDVIW_S -                  ; Use this routine to obtain
    -                           ; the local DTE class and
    -                           ; remote DTE.
    CHAN = NV_CHAN,-            ; channel
    ITMLST = REMDTE_LIST        ; Address of item-list of information.
    -                           ; wanted from system service.
    IOSB = IO_STATUS            ; Status return
  BSBW ERROR                    ; Check for error

Return Status

SS$_NORMAL Service completed successfully.

$QIO(IO$_ACCESS)
$QIO(IO$_ACCESS) — Set Up a Virtual Circuit

Purpose
The QIO system service with a function code of IO$_ACCESS requests a virtual circuit to be set up, and
can optionally request network facilities. If you subscribe to the fast select facility, up to 128 bytes of data
can be sent with the request rather than being limited to 16 bytes of data for normal calls. You must also
use this service before data can be transmitted or received on a PVC.

For an SVC, the service completes when the request is either accepted or rejected by the remote DTE.
For a PVC, the call completes without any PSDN activity.

If there is a mailbox associated with the NW device, an NCB is written to the mailbox with details of
the call acceptance or call rejection. Call accept messages have the code MSG$_CONNECT, and reject
messages have the code MSG$_ DISCONNECT.

If the rights identifier PSI$X25_USER is defined on your system, your program must possess either that
rights identifier or BYPASS privilege.

If PSI$X25_USER is not defined on your system, your program must possess NETMBX privilege.

14



Chapter 2. Common System Services

Note that to set up a virtual circuit requires certain system resources, which are deducted from the quota
for your process. Refer to the VSI X.25 for OpenVMS Programming Guide for details.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],p2,[p3],[p4],[p5],p6

Arguments
func IO$_ACCESS
p1 Not used.
p2 Starting virtual address of quadword descriptor of the NCB (see Appendix C).
p3 Not used.
p4 Not used.
p5 Not used.
p6 Unit number of the NV device, for X.29 programs. If the call is handled by the

NW device (in X.25 programs), p6 must be zero. The default value for p6 is
zero.

NCB Contents
Only mandatory, optional, and ignore items are listed in the following table. Other items will generate an
error if you use them.

PSI$C_NCB Item Code Meaning Notes

Mandatory items

For PVCs, you must specify:
PVCNAM PVC identifier 2, 3

Optional items

CALLED_ EXTENSION Called address extension 5
CALLING_ EXTENSION Calling address extension 5
CHARGING_INFO Charging information request  
CUG (Bilateral) Closed User Group 1
CUM_TRST_DLY Cumulative transit delay  
DTECLASS Name of the DTE Class from which a

member DTE will be used to make the
call

3, 4

ETE_TRST_DLY End–to–end transit delay  
EXPEDITE Negotiate use of interrupts  
FSEL Fast select (no restriction)  
FSEL_RES Fast select (restricted response)  
LOCFAC Local PSDN facilities  
LOCSUBADR (OpenVMS VAX) Local subaddress  
MAX_TRST_DLY Maximum acceptable transit delay  

15



Chapter 2. Common System Services

PSI$C_NCB Item Code Meaning Notes

MIN_THRUCLS Minimum throughput class (data rate)  
NET_USER_ID Network user identifier  
PKTSIZE Packet size  
RCV_QUOTA Maximum receive buffer bytes 3
REMDTE Remote DTE address 1
REVCHG Reverse charging request  
RPOA Remote Port of Access  
TEMPLATE Name of template created by network

management containing specified
parameters

 

THRUCLS Throughput class (maximum data rate)  
TRANSIT_DELAY Maximum transit delay  
USERDATA User data field 6
WINSIZE Window size  

Ignored items

NULL Null item identifier  

Notes
1. To specify the remote DTE for an SVC, you need to specify the DTE class using one of the

following items:

● DTECLASS

● TEMPLATE (The template should contain a value for the DTE Class attribute)

In addition, you need to specify one of the following items:

● REMDTE

● CUG (if the CUG is not a BCUG, specify REMDTE also)

● TEMPLATE (The template should contain a value for the Destination DTE Address attribute or
the Selected Group attribute)

2. PVCNAM is used for X.25 programs only.

3. These are the only fields valid with a PVC.

4. The DTE Class could be a Remote DTE Class and may not have any member DTEs, for example, it
could be used by an Access system to make calls through a Connector system.

5. The called address extension facility is encoded as follows:

● Number of bytes in the facility (1 byte)

● Number of semi–octets in the facility (1 byte)

● The facility itself (up to 32 octets, with 2 digits per byte)

16



Chapter 2. Common System Services

Each of these bytes is encoded so that the low–order semi–octet is in bits 0 to 3, and the high–
order semi–octet is in bits 4 to 7.

When the matching is performed, a logical AND is performed on each byte of the facility with the
corresponding byte of the mask and the result is compared with the corresponding byte of the value.
The match succeeds if all the bytes compare. If the incoming call does not provide at least as many
semi–octets as the extension value specifies, the match fails.

6. The user data field can be up to 16 bytes in length for normal calls and up to 128 bytes in length for
fast select calls.

Examples
X.25 Code Example In this example, the system service, IO$_ACCESS, is called to set up a virtual
circuit. The channel to the network device is PSI_CHAN. The I/O Status Block is declared as
IO_STATUS, and the address of a descriptor of the NCB to be used is ACCESS_NCB.

; Declaring the data:
PSI_CHAN:
           .BLKW   1                ; Mailbox channel
IO_STATUS:
           .BLKW   4                ; I/O status block
ACCESS_NCB:
           .LONG ACCESS_NCB_LEN     ; NCB descriptor
           .ADDRESS ACCESS_NCB_BLK
; Using the System Service:
$QIOW_S -                      ; Issue QIO and wait
        CHAN = PSI_CHAN,-      ; to network device
        FUNC = #IO$_ACCESS,-   ; Function is make call
        IOSB = IO_STATUS,-     ; I/O status block
        P2 = #ACCESS_NCB       ; Address of call NCB
                               ; descriptor
P6 = 0                         ; NV device unit number
                               ; is zero for NW

X.29 Code Example In this example, the system service IO$_ACCESS is called to set up a virtual
circuit for an X.29 call. The channel to the network device is NW_CHAN. The I/O Status Block is
declared as IO_STATUS, and the address of a descriptor of the NCB to be used is ACCESS_NCB.

NW_CHAN:
  .BLKW   1     ; Channel to NW
NV_UNIT:
  .BLKL   1     ; NV Unit number
IO_STATUS:
  .BLKW   4     ;I/O Status block
;+
; Network Connect Block:
;-
ACCESS_NCB:   ; NCB Descriptor
  .LONG    ACCESS_NCB_LEN
  .ADDRESS  ACCESS_NCB_BLK
ACCESS_NCB_BLK:   ; NCB to set up a call
  DTECLASS:   ; DTE Class
  .WORD  DTECLASS_LEN
  .WORD  PSI$C_NCB_DTECLASS
  .ASCIC  /ISO8208/

17



Chapter 2. Common System Services

  DTECLASS_LEN = .-DTECLASS
REMOTE_DTE:   ; DTE Address
  .WORD  REMOTE_DTE_LEN
  .WORD  PSI$C_NCB_REMDTE
  .ASCIC  /23427341234522/
  REMOTE_DTE_LEN = .-REMOTE_DTE
          ; NO user data
          ; NO fast select
  ACCESS_NCB_LEN = .-ACCESS_NCB_BLK
;+
; Set up a virtual call
;-
  $QIOW_S -   ; Issue QIO and wait
    CHAN = NW_CHAN,-  ; to network device
    FUNC = #IO$_ACCESS,- ; function is make call
    IOSB = IO_STATUS,-  ; I/O status block
    P2 = #ACCESS_NCB,-  ; address of call NCB
    P6 = NV_UNIT  ; NV unit number
  BSBW IO_ERROR   ; Check for I/O error

Return Status
SS$_NORMAL Service queued successfully (R0). Remote DTE has accepted the

request to set up a virtual circuit (IOSB).
SS$_ACCVIO Unable to read the NCB descriptor or the NCB.
SS$_CLEARED The virtual circuit was cleared while this request was being

processed. The remote DTE has rejected the request to set up a
virtual circuit (IOSB).

SS$_DEVNOTMOUNT X.25 for OpenVMS is not installed with X.29 support. NVDRIVER
has not been installed by SYSGEN. X.29 calls cannot be made. This
status is only returned for X.29 calls.

SS$_FILALRACC For SVCs: Invalid unit number for SVC already in use by another
process.

For PVCs (X.25 only): The PVC is already being used by another
process.

SS$_IVBUFLEN The format of the NCB item–list is invalid. Check the secondary
status in the third word of the IOSB. Details of the secondary status
are given below.

SS$_IVDEVNAM The format of the NCB is invalid, or an error was detected while
processing the NCB. Check the secondary status in the IOSB. Details
of the secondary status are given below.

SS$_IVLOGNAM The logical name PSI$NETWORK has a length of 0 or has more
than 63 characters.

SS$_NOLINKS No internal logical channels available.
SS$_NOPRIV The process does not have the privilege(s) required for this function.
SS$_NOSUCHNODE The PSDN specified in the NCB cannot be accessed from your

system.
SS$_OPINCOMPL A previous call is still in progress on this channel.
SS$_RESULTOVF The translation of the logical name PSI$NETWORK has more than

16 characters.

18



Chapter 2. Common System Services

Secondary Status Values
The secondary status values are found in the third word of the IOSB.

For OpenVMS VAX, if the first word of the IOSB contains SS$_NORMAL, the third word can have
one or more of the following flags set:

PSI$M_STS_REMDTELNG Remote DTE address too long — address truncated
PSI$M_STS_PKTBAD Invalid packet size — nearest valid size chosen
PSI$M_STS_RPOALNG The length of the RPOA item is not a multiple of 4 digits, and has

been truncated
PSI$M_STS_THRBAD Invalid throughput class — nearest valid class chosen
PSI$M_STS_USERLNG Too much user data supplied — data truncated
PSI$M_STS_WINBAD Invalid window size — nearest valid size chosen
PSI$M_STS_WORDBAD The value of one of the transit delay items has been reduced to

65,535

If the first word of the IOSB contains SS$_ABORT or SS$_IVDEVNAM, the third word can contain
one of the status values shown in the following table.

Code Meaning

PSI$C_ERR_BADNAME Bad counted string parameter. Correct and retry.
PSI$C_ERR_BADPARM Bad parameters specified. This may represent an internal error. If

you are not able to find a parameter error, contact your local HP
support representative for information about the variety of service
options available to you and the procedures for submitting software
problem reports.

PSI$C_ERR_CONFLICT Conflicting items specified.
PSI$C_ERR_FACLNG Facilities too long.
PSI
$C_ERR_DTENOTAVAILABLE

The requested DTE is not available.

PSI
$C_ERR_DTENOTINCLASS

The requested DTE is not a member of the specified DTE class.

PSI
$C_ERR_DTENOTINGROUP

The requested DTE is not a member of the specified group.

PSI$C_ERR_INVEXP Invalid use of expedited data negotiation.
PSI$C_ERR_INVITEM Invalid item code.
PSI$C_ERR_INVNUM Invalid ASCII number.
PSI$C_ERR_INVTRSTDLY Invalid use of end–to–end transit delay facility; for example,

MAX_TRST_DLY without ETE_TRST_DLY, or ETE_TRST_DLY
without CUM_TRST_DLY.

PSI$C_ERR_L3ERR Error returned from level 3.
PSI$C_ERR_MANYICI More than one internal call identifier given.
PSI$C_ERR_NOACCESS The X.25 Access module has been disabled or deleted.
PSI$C_ERR_NODTES No DTE is available on which to make the call.

19



Chapter 2. Common System Services

Code Meaning

PSI$C_ERR_NOICI No internal identifier specified.
PSI$C_ERR_NOL3 Internal error, contact your local HP support representative for

information about the variety of service options available to you and
the procedures for submitting software problem reports.

PSI$C_ERR_NOLOCAL The ACP needs more logical workspace memory. Increase the
nonpaged pool and retry.

PSI$C_ERR_NONONPAG Not enough local workspace memory. Increase the nonpaged pool
and retry.

PSI$C_ERR_NOSUCHDTE The specified DTE is not known.
PSI
$C_ERR_NOSUCHDTECLASS

The specified DTE class is not known.

PSI$C_ERR_NOSUCHGROUP The specified group is not known.
PSI$C_ERR_NOSUCHPVC The specified PVC is not known (X.25 only).
PSI
$C_ERR_NOSUCHSECURITY
DTECLS

The security DTECLASS has not been found.

PSI
$C_ERR_NOSUCHTEMPLATE

The specified template is not known.

PSI$C_ERR_NOTIMP The requested feature is not yet implemented.
PSI$C_ERR_NOTRANS No translation for this name (for example, unknown user group).
PSI$C_ERR_PVCALRACC Internal error (X.25 only), contact your local HP support

representative for information about the variety of service options
available to you and the procedures for submitting software problem
reports.

PSI$C_ERR_RECURLMT Recursion limit reached, contact your local HP support
representative for information about the variety of service options
available to you and the procedures for submitting software problem
reports.

PSI$C_ERR_UNKNOWN Unspecified internal error, contact your local HP support
representative for information about the variety of service options
available to you and the procedures for submitting software problem
reports.

$QIO(IO$_ACCESS!IO$M_ABORT)
$QIO(IO$_ACCESS!IO$M_ABORT) — Reject a Call

Purpose
$QIO(IO$_ACCESS!IO$M_ABORT) rejects an incoming request to set up a virtual circuit.

If you subscribe to the fast select facility, you can use this call to send user data.

Note that you are advised to use the incoming call’s NCB as argument p2 to this QIO. Find the NCB
in the mailbox associated with the channel that received the call. If you do not use the NCB as p2 , the
incoming call identifier must be copied from the incoming NCB.

20



Chapter 2. Common System Services

If the rights identifier PSI$X25_USER is defined on your system, your program must possess either that
rights identifier or BYPASS privilege.

If PSI$X25_USER is not defined on your system, your program must possess NETMBX privilege.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],p2,[p3],[p4],[p5],[p6]

Arguments
func IO$_ACCESS!IO$M_ABORT
p1 Not used.
p2 Starting virtual address of quadword descriptor of the NCB (see Appendix C).

See Note 1.
p3 Not used.
p4 Not used.
p5 Not used.
p6 Not used.

NCB Contents
Only mandatory, optional, and ignore items are listed in the following table. Other items will generate an
error if you use them.

PSI$C_NCB Item Code Meaning Notes

Mandatory items

ICI Incoming call identifier  
Optional items

CALLED_ EXTENSION Called address extension  
CAUSE Code for PSDN clearing a call 2
DIAGCODE Diagnostic code  
LOCFACR Local PSDN facilities  
RESPDATA Fast select response data 3

Ignored items

ADDR_MOD_RSN Reason for modifying line address  
CALLING_ EXTENSION Calling address extension  
CALL_REDIR_ORIG Original DTE filter  
CALL_REDIR_RSN Call redirection reason  
CUG (Bilateral) Closed User Group  
CUM_TRST_DLY Cumulative transit delay  
DTECLASS Name of the DTE Class from which a

member DTE is used to make the call
 

ETE_TRST_DLY End–to–end transit delay  
EXPEDITE Negotiate use of interrupts  

21



Chapter 2. Common System Services

PSI$C_NCB Item Code Meaning Notes

FLT_PRI Filter priority  
FSEL Fast select (no restriction)  
FSEL_RES Fast select (restricted response)  
LOCFAC Local PSDN facilities  
LOCSUBADR (OpenVMS VAX) Local subaddress  
MAX_TRST_DLY Maximum acceptable transit delay  
MIN_THRUCLS Minimum throughput class (data rate)  
NET_USER_ID Network user identifier  
NULL Null item identifier  
PKTSIZE Packet size  
RCV_QUOTA Maximum number of receive buffers  
REMDTE Remote DTE address  
REMSUBADR Remote DTE subaddress  
REVCHG Reverse charging request  
RPOA Remote Port Of Access  
TEMPLATE Name of template created by network

management containing specified
parameters

 

THRUCLS Throughput class (maximum data rate)  
TRANSIT_DELAY Maximum transit delay  
USERDATA User data field  
WINSIZE Window size  

Notes
1. You are advised to use the incoming call’s NCB as argument p2 to this QIO. Find the NCB in the

mailbox associated with the channel that received the call. If you do not use the NCB as p2, the
incoming call identifier must be copied from the incoming NCB.

2. This field is ignored unless X.25 for OpenVMS is operating as a DCE (Data Circuit–terminating
Equipment) in order to connect to other DTEs outside the PSDN. X.25 for OpenVMS can operate as
a DCE to connect back–to–back with another DTE. DTEs cannot use nonzero codes, but DCEs can.

3. Use this field only for fast select calls.

Example
In the following example, IO$_ACCESS!IO$M_ABORT rejects the request. The channel to the network
device is PSI_CHAN and the NCB descriptor begins at ABORT_NCB.

; Declaring the data:
PSI_CHAN:
           .BLKW   1                  ; Mailbox channel
ABORT_NCB:
           .BLKQ   1                  ; NCB descriptor

22



Chapter 2. Common System Services

; Using the System Service:
$QIOW_S -                                ; Issue QIO and wait
        CHAN = PSI_CHAN,-                ; to the network device
        FUNC = #IO$_ACCESS!IO$M_ABORT,-  ; Function is reject
                                         ; request
        P2 = #ABORT_NCB                  ; NCB descriptor address

Return Status
SS$_NORMAL Service successfully queued (R0). Request successfully rejected

(IOSB).
SS$_ACCVIO Unable to read argument p2.
SS$_CLEARED The virtual circuit was cleared while this request was being

processed, or the circuit was in the process of being cleared when
you issued the request.

SS$_FILALRACC Invalid unit number for SVC.
SS$_IVBUFLEN The format of the NCB item–list is invalid. See the secondary status

in the IOSB.
SS$_IVDEVNAM The format of the NCB is invalid, or error detected while processing

the NCB. See the secondary status in the IOSB.
SS$_OPINCOMPL A previous call is still in progress on this channel.

$QIO(IO$_ACCESS!IO$M_ACCEPT)
$QIO(IO$_ACCESS!IO$M_ACCEPT) — Accept a Call

Purpose
$QIO(IO$_ACCESS!IO$M_ACCEPT) accepts an incoming request from a remote DTE (X.25) or a
remote PAD (X.29) to set up a virtual circuit.

The parameters requested in the incoming call can be negotiated using this QIO function. Parameter
negotiation can be achieved either by specifying individual items to be negotiated or by specifying
the items in a template (see NCB TEMPLATE item code). Note that if a template is not defined, the
Default template is used.

A template can also be used to supply parameters that are not defined in the NCB used to accept the call.

If you subscribe to the fast select acceptance facility, you can use this call to send user data.

Note that you are advised to use the NCB received as argument p2. Otherwise, you should copy the
incoming call identifier (PSI$C_NCB_ICI) from the received NCB. Read the NCB in the mailbox
associated with the channel that received the call.

If the rights identifier PSI$X25_USER is defined on your system, your program must possess either that
rights identifier or BYPASS privilege.

If PSI$X25_USER is not defined on your system, your program must possess NETMBX privilege.

Note that to accept a request to set up a virtual circuit requires certain system resources which are
deducted from the quota for your process. See the VSI X.25 for OpenVMS Programming Guide for
details.

23



Chapter 2. Common System Services

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],p2,[p3],[p4],[p5],p6

Arguments
func IO$_ACCESS!IO$M_ACCEPT.
p1 Not used.
p2 Starting virtual address of quadword descriptor of the NCB (see Appendix C).

You are advised to use the incoming call’s NCB as argument p2 to this QIO.
Find the NCB in the mailbox associated with the channel that received the
call. If you do not use the incoming NCB, you must copy the incoming call
destination from that NCB.

p3 Not used.
p4 Not used.
p5 Not used.
p6 Unit number of the NV device (zero for X.25 programs).

NCB Contents
Only mandatory, optional, and ignored items are listed in the following table. Other items will generate
an error if you use them.

PSI$C_NCB Item Code Meaning Notes

Mandatory items

ICI Incoming call identifier  
Optional items

CALLED_ EXTENSION Called address extension 1
CUM_TRST_DLY_R Cumulative transit delay  
EXPEDITE Negotiate use of interrupts  
LOCFACR Local PSDN facilities  
NET_USER_ID Network user identifier  
RESPDATA Fast select response data 2
PKTSIZE Packet size  
RCV_QUOTA Maximum number of receive buffers  
TEMPLATE Name of template created by network

management containing specified
parameters

3

THRUCLS Throughput class (maximum data rate)  
WINSIZE Window size  

Ignored items

ADDR_MOD_RSN Reason for modifying line address  
CALLING_ EXTENSION Calling address extension  

24



Chapter 2. Common System Services

PSI$C_NCB Item Code Meaning Notes

CALL_REDIR_ORIG Original DTE filter  
CALL_REDIR_RSN Call redirection reason  
CUG (Bilateral) Closed User Group  
CUM_TRST_DLY Cumulative transit delay  
ETE_TRST_DLY End–to-end transit delay  
FSEL Fast select (no restriction)  
FSEL_RES Fast select (restricted response)  
LOCFAC Local PSDN facilities  
LOCSUBADR (OpenVMS VAX) Local subaddress  
MAX_TRST_DLY Maximum acceptable transit delay  
MIN_THRUCLS Minimum throughput class (data rate)  
DTECLASS Name of a DTE Class from which a

member DTE is used to make the call
 

NULL Null item identifier  
FLT_PRI Filter priority  
REMDTE Remote DTE address  
REMSUBADR Remote DTE subaddress  
REVCHG Reverse charging request  
RPOA Remote Port Of Access  
TRANSIT_DELAY Maximum transit delay  
USERDATA User data field  

Notes
1. The called address extension facility is encoded as follows:

● Number of bytes in the facility (1 byte)

● Number of semi–octets in the facility (1 byte)

● The facility itself (up to 32 octets, with 2 digits per byte)

Each of these bytes is encoded so that the low–order semi–octet is in bits 0 to 3, and the high–
order semi–octet is in bits 4 to 7.

When the matching is performed, a logical AND is performed on each byte of the facility with the
corresponding byte of the mask and the result is compared with the corresponding byte of the value.
The match succeeds if all the bytes compare. If the incoming call does not provide at least as many
semi–octets as the extension value specifies, the match fails.

2. Use this field for fast select calls only.

3. Include all parameters in the template that are to be negotiated or that are to be supplied if not
present in the NCB used to accept the call. If the TEMPLATE item code is not defined, the
Default template is used.

25



Chapter 2. Common System Services

Examples
In the following example, the request to set up a virtual circuit is accepted with the IO$_ACCESS!
IO$M_ACCEPT call. The channel to the network device is PSI_CHAN. An I/O status block,
IO_STATUS, is to receive the completion status, and the starting address of the descriptor of the NCB
is ACCEPT_NCB.

; Declaring the data:
PSI_CHAN:
           .BLKW   1                 ; Mailbox channel
IO_STATUS:
           .BLKW   4                 ; I/O status block
ACCEPT_NCB:
           .BLKQ   1                 ; NCB descriptor
; Using the System Service:
$QIOW_S -                                 ; Issue QIO and wait
        CHAN = PSI_CHAN,-                 ; to the network device
        FUNC = #IO$_ACCESS!IO$M_ACCEPT,-  ; Function is accept call
        IOSB = IO_STATUS,-                ; I/O status block
        P2 = ACCEPT_NCB                   ; NCB descriptor address

In the following example, the request to set up a virtual circuit is accepted with the IO$_ACCESS!IO
$M_ACCEPT call. The channel to the network device is NW_CHAN. NV_UNIT supplies the NV device
number. An I/O status block, IO_STATUS, is to receive the completion status, and the starting address
of the descriptor of the NCB is ACCEPT_NCB.

NW_CHAN:
  .BLKW   1                     ; Channel to NW
NV_UNIT:
  .BLKL   1                     ; NV Unit number
IO_STATUS:
       .BLKW   4                ; IO Status block
;+
; Network Connect Block:
;-
ACCEPT_NCB:                     ; NCB Descriptor
  .BLKL   2
;+
; Accept a virtual call
;-
$QIOW_S -                              ; Issue QIO and wait
  CHAN = NW_CHAN,-                     ; to network device
  FUNC = #IO$_ACCESS!IO$M_ACCEPT,-     ; function is accept call
  IOSB = IO_STATUS,                    ; I/O status block
  P2 = #ACCESS_NCB,-                   ; address of call NCB
  P6 = NV_UNIT                         ; NV unit number
  BSBW IO_ERROR                        ; Check for I/O error

Return Status
SS$_NORMAL Service queued successfully (R0). The virtual circuit has been

accepted (IOSB).
SS$_ACCVIO Unable to read argument p2.
SS$_CLEARED The virtual circuit was cleared while this request was being

processed, or the circuit was in the process of being cleared when
you issued the request.

26



Chapter 2. Common System Services

SS$_DEVOFFLINE Local DTE or X.25 Connector node is being shut down.
SS$_FILALRACC Invalid unit number for SVC already in use by another process.
SS$_FILNOTACC No SVC on the specified channel to NV (X.29 only).
SS$_IVDEVNAM The format of the NCB is invalid, or an error was detected while

processing the NCB. Check the secondary status in the IOSB.
SS$_NOSUCHNODE The incoming call you are trying to accept no longer exists; or, the

incoming call identifier (PSI$C_NCB_ICI) was incorrect; or, the call
is using the facility for fast select (restricted response).

SS$_OPINCOMPL A previous call is still in progress on this channel.

$QIO(IO$_ACCESS!IO$M_REDIRECT)
$QIO(IO$_ACCESS!IO$M_REDIRECT) — Redirect a Call

Purpose
$QIO(IO$_ACCESS!IO$M_REDIRECT) redirects an incoming call request to another process before
the call request is accepted or rejected.

The call uses the subaddress and other addressing information specified in the NCB in the normal way,
to associate the new process with the call.

The system service completes when X.25 for OpenVMS redirects the incoming call request.

Note that you are advised to use the NCB received as argument p2. Otherwise, you should copy the
incoming call identifier (PSI$C_NCB_ICI) from the received NCB. Read the NCB in the mailbox
associated with the channel that received the call.

To ensure that your process is not searched again, move the priority value from PSI$C_NCB_FLT_PRI
to PSI$C_NCB_FLT_REDPRI.

If the rights identifier PSI$X25_USER is defined on your system, your program must possess either that
rights identifier or BYPASS privilege.

If PSI$X25_USER is not defined on your system, your program must possess NETMBX privilege.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],p2,[p3],[p4],[p5],[p6]

Arguments

func IO$_ACCESS!IO$M_REDIRECT.
p1 Not used.
p2 Starting virtual address of quadword descriptor of the NCB.

You are advised to use the incoming call’s NCB as argument p2  to this QIO.
Find the NCB in the mailbox associated with the channel that received the call.

27



Chapter 2. Common System Services

If you do not use the NCB as p2, the incoming call identifier must be copied
from the incoming NCB (see Appendix C for further details).

p3 Not used.
p4 Not used.
p5 Not used.
p6 Not used.

NCB Contents
Only mandatory, optional, and ignored items are listed in the following table. Other items will generate
an error if you use them.

PSI$C_NCB Item Code Meaning

Mandatory items

ICI Incoming call identifier
In addition to this item code, at least one of the following item codes must be specified:
FILTER Name of filter to which to redirect the call. Note that the filter

to which you redirect the call is not used to rematch the call
parameters.

FLT_REDPRI Redirection priority.
Optional items

CALLED_ EXTENSION Called address extension
CALL_REDIR_ORIG Original DTE filter
CALL_REDIR_RSN Call redirection reason
LOCSUBADR (OpenVMS
VAX)

Local subaddress

TEMPLATE Name of template created by network management with specified
parameters

USERDATA User data field
Ignored items

ADDR_MOD_RSN Reason for modifying line address
CALLING_ EXTENSION Calling address extension
CUG (Bilateral) Closed User Group
CUM_TRST_DLY Cumulative transit delay
ETE_TRST_DLY End–to–end transit delay
EXPEDITE Negotiate use of interrupts
FSEL Fast select (no restriction)
FSEL_RES Fast select (restricted response)
LOCFAC Local PSDN facilities
MAX_TRST_DLY Maximum acceptable transit delay
MIN_THRUCLS Minimum throughput class (data rate)
DTECLASS Name of a DTE Class from which a member DTE is used to make

the call

28



Chapter 2. Common System Services

PSI$C_NCB Item Code Meaning

NULL Null item identifier
PKTSIZE Packet size
FLT_PRI Filter priority
RCV_QUOTA Maximum number of receive buffers
REMDTE Remote DTE address
REMSUBADR Remote DTE subaddress
REVCHG Reverse charging request
RPOA Remote Port Of Access
THRUCLS Throughput class (maximum data rate)
TRANSIT_DELAY Maximum transit delay
WINSIZE Window size

Example
In this example the QIO is used with function code IO$ACCESS!IO$M_ REDIRECT, to redirect the
call according to the parameters in the NCB REDIRECT_NCB.

; Declaring the data:
PSI_CHAN:
           .BLKW   1                  ; Mailbox channel
IO_STATUS:
           .BLKW   1                  ; I/O status block
REDIRECT_NCB:
           .BLKQ   1                  ; NCB descriptor
; Using the System Service:
$QIOW_S -                                   ; Issue QIO and wait
        CHAN = PSI_CHAN,-                   ; to the network device
        FUNC = #IO$_ACCESS!IO$M_REDIRECT,-  ; Function is
                                            ; redirect call
        IOSB = IO_STATUS,-                  ; I/O status block
        P2 = REDIRECT_NCB                   ; NCB descriptor address

Return Status

SS$_NORMAL Service queued successfully (R0). Request redirected successfully
(IOSB).

SS$_ACCVIO Unable to read argument p2.
SS$_IVBUFLEN The format of the NCB item–list is invalid. See the secondary status

in the IOSB.
SS$_IVDEVNAM Either the format of the NCB is invalid, or an error was detected

while processing the NCB. Check the secondary status in the IOSB.
SS$_NOSUCHNODE Either the incoming call you are trying to redirect no longer exists,

or the incoming call identifier (PSI$C_NCB_ICI) is incorrect.
SS$_OPINCOMPL A previous call is still in progress on this channel.
SS$_TOOMANYREDS
(OpenVMS VAX)

This call has been redirected more than eight times, and cannot be
redirected again.

29



Chapter 2. Common System Services

$QIO(IO$_ACPCONTROL)
$QIO(IO$_ACPCONTROL) — Declare a Network Process

Purpose
$QIO(IO$_ACPCONTROL) allows the current process to select which incoming calls it handles.

The network process declaration block specifies the matching parameters for the filter. Incoming calls
are placed in the mailbox associated with the channel over which this $QIO(IO$_ACPCONTROL) was
issued. The calls are selected according to the following criteria:

● The filter parameters match those of the call.

● Either the filter has the highest priority of those matching the call, or the call has been redirected
from a filter with a priority greater than or equal to that of the current filter.

The request can specify a number of parameters to identify the incoming calls it will handle, and these
parameters form an X25 ACCESS FILTER entity for your process. These parameters are shown in
Table 2.2.

The filter specified by $QIO(IO$_ACPCONTROL) can be one of two types:

Static

This type of filter is one that is created using management commands. It is available until either
disabled or deleted.

Dynamic

This type of filter is created dynamically by defining its characteristics in the $QIO(IO
$_ACPCONTROL) call. A filter created in this way ceases to exist when the specified channel is
deassigned.

The action taken when the $QIO(IO$_ACPCONTROL) call is processed depends on the filter name
specified in the call:

● If the filter name matches a static filter, that filter is used to listen for incoming calls.

● If the filter name does not match a static filter, a dynamic filter having the filter characteristics
specified in the $QIO(IO$_ACPCONTROL) call is created and used to listen for incoming calls.

If a filter name is not specified in the $QIO(IO$_ACPCONTROL) call, one of the following default
filters is created:

● If the system service call is an X.25 call (the ACCLVL item code contains the string "X25L3"), a
filter having a name of the following format is created:

X25L3-pid-xxxx

where:

pid is the process identifier (in hex)

xxxx is a unique number (in hex)

● If the system service call is an X.29 call (the ACCLVL item code contains the string "X29"), a filter
having a name of the following format is created:

30



Chapter 2. Common System Services

X29-pid-xxxx

where:

pid is the process identifier (in hex)

xxxx is a unique number (in hex)

Further filters can be added by issuing more than one QIO with a function code of IO
$_ACPCONTROL, but you cannot change the information associated with an existing filter.

Filters can be deleted without stopping your process, by deassigning the channel over which $QIO(IO
$_ACPCONTROL) was issued.

For information about displaying the filters in the X25 Access module, see VSI X.25 for OpenVMS
Management Guide [https://docs.vmssoftware.com/vsi-x-25-management-guide/].

All incoming calls whose parameters match those specified in this QIO are placed in the mailbox
associated with the channel over which this QIO request was issued.

Details of the network process declaration block contents are given below.

Format
$QIO [efn],chan,func, [iosb],[astadr],[astprm], p1,p2,[p3],[p4], [p5],[p6]

Arguments
func IO$_ACPCONTROL
p1 Address of the quadword descriptor of a 5–byte block. The format of the 5–

byte block is:

.BYTE NFB$C_DECLNAME

.LONG 0

The contents of the 5–byte block are:

A function type code (one byte)
A longword parameter value

The function type is a symbol defined by the $NFBDEF macro in the library
LIB.MLB.

p2 Starting virtual address of the quadword descriptor of a network process
declaration block (see below).

p3 Not used.
p4 Not used.
p5 Not used.
p6 Not used.

Network Process Declaration Block
The network process declaration block consists of items of information. The items are of variable length,
each item containing the following fields:

31

https://docs.vmssoftware.com/vsi-x-25-management-guide/
https://docs.vmssoftware.com/vsi-x-25-management-guide/
https://docs.vmssoftware.com/vsi-x-25-management-guide/


Chapter 2. Common System Services

Word 1

Length of data in this item, including the length and type fields.

Word 2

Type code, of the form PSI$C_NTD_code.

Subsequent words

Data (variable length).

Each type of data has a specific format: single–byte value, counted string, or longword value. Table 2.2
summarizes the permitted type codes.

Table 2.2. Item Codes for a Network Process Declaration Block

PSI$C_NTD Item
Code

Meaning Content

Mandatory item codes

ACCLVL Access level Counted ASCII string, which declares the filter of
either:

● An X25 listener (ACCLVL contains the string
"X25L3")

● An X29 listener (ACCLVL contains the string
"X29")

See Note 1.
Optional item codes

CALLED_DTE Called DTE address Counted string, containing the address of the DTE
originally called. This item is used after a call has
been redirected.

DATMSK Data mask Counted string of up to 16 bytes. X.25 for
OpenVMS performs a logical AND operation
between the mask and the user data of the
incoming call; the result of this operation
is compared with the data specified in PSI
$C_NTD_USRDATA. If PSI$C_NTD_DATMSK
is not specified, no comparison is made.

See Note 2.
EXTMSK Called extension Counted string containing a byte that specifies the

number of semi–octets in the mask, followed by
the mask value of up to 40 semi–octets. X.25 for
OpenVMS

performs a logical AND operation between
the mask and the PSI$C_NCB_CALLED_
EXTENSION field of the incoming call; the
result of this operation is compared with the
data specified in PSI$C_NTD_EXTVAL. If

32



Chapter 2. Common System Services

PSI$C_NTD Item
Code

Meaning Content

PSI$C_NTD_EXTMSK is not specified, no
comparison is made.

See Note 3.
EXTVAL Called extension Counted string containing a byte that specifies

the number of semi–octets in the value, followed
by the value of up to 40 semi–octets. X.25 for
OpenVMS compares the data with the incoming

data masked by PSI$C_NTD_EXTMSK. If
PSI$C_NTD_EXTVAL is not specified, no
comparison is made.

INCDTE Incoming DTE Counted ASCII string, containing the Called DTE
field from an incoming call packet.

FILTER Name of the filter in the
X25 Access module

Counted ASCII string, specifying the name of:

● A static filter created by network management.

● A dynamic filter created by $QIO(IO$_
ACPCONTROL) with the specified filter
name. If FILTER is not specified, then the
filter name is derived from the ACCLVL item
code (see the call description).

DTECLASS DTE Class Counted ASCII string.
FLT_PRI Priority Single–word value, in the range 0 (low) to 65,535

(high). The default priority is 3000.
RCVDTE Receiving DTE Counted ASCII string, containing the address of

the local DTE that received the call.
REDRSN Redirect reason 32–bit integer, containing one of the following

symbolic values:

● PSI$C_REDRSN_BUSY

● PSI$C_REDRSN_OUT_OF_ORDER

● PSI$C_REDRSN_SYSTEMATIC
REMDTE Remote DTE Counted ASCII string. If not specified, all remote

DTE addresses are handled.
SAHI (OpenVMS VAX) Subaddress high 16–bit integer, containing the highest value of the

range of subaddresses to be handled. If you do not
specify a range, all subaddresses are handled.

SALO (OpenVMS
VAX)

Subaddress low 16–bit integer, containing the lowest value of the
range of subaddresses to be handled. If you do not
specify a range, all subaddresses are handled. See
Note 5.

USRDATA User data Counted ASCII string of up to 16 bytes. X.25
for OpenVMS compares the user data with the

33



Chapter 2. Common System Services

PSI$C_NTD Item
Code

Meaning Content

incoming data masked by PSI$C_NTD_DATMSK.
If USRDATA is not specified, no comparison is
made.

USRGRP Closed user group Counted ASCII string. If not specified, all closed
user groups are handled.

Notes
1. If ACCLVL = X25L3, you must accept, reject or redirect the call whose details are in the NCB.

If ACCLVL = X29, the call has been accepted by X.25 for OpenVMS, and you must assign a
channel to the NV device in the mailbox message.

2. When you specify user data and a data mask, the network process performs a logical AND operation
between the mask and the user data field of the incoming call. The network process then compares
the result of this operation with the user data value contained in the network process declaration
block, and accepts the call only if the values match.

3. The called address extension facility is encoded as follows:

● Number of bytes in the facility (1 byte)

● Number of semi–octets in the facility (1 byte)

● The facility itself (up to 32 octets, with 2 digits per byte)

Each of these bytes is encoded so that the low–order semi–octet is in bits 0 to 3, and the high–
order semi–octet is in bits 4 to 7.

When the matching is performed, a logical AND operation is performed between each byte of the
facility and the corresponding byte of the mask and the result is compared with the corresponding
byte of the value. The match succeeds if all the bytes compare. If the incoming call does not provide
at least as many semi–octets as the extension value specifies, the match fails.

4. The values for the redirect reason code are as follows:

Symbolic Value Meaning

PSI$C_REDRSN_BUSY Busy
PSI$C_REDRSN_OUT_OF_ORDER Out of order
PSI$C_REDRSN_SYSTEMATIC Automatic redirection

5. For OpenVMS VAX, if you want a single subaddress or a range of subaddresses, you must specify
both the lowest and highest values. For a single subaddress, specify the same value for the SAHI and
SALO fields. If you specify a subaddress range, only calls specifying a subaddress are handled (even
if you specify the full range of 0 to 99). If you do not specify a range, all subaddresses are handled.

For OpenVMS IA-64 and Alpha, to filter for specific incoming calls, use the Incoming DTE Address
attribute of the X25 ACCESS FILTER entity, or use the optional PSI$C_NTD_INCDTE item in the
Network Process Declaration block.

34



Chapter 2. Common System Services

6. If the rights identifier PSI$DECLNAME is defined on your system, your process must possess either
that rights identifier or BYPASS privilege.

If PSI$DECLNAME is not defined on your system, your process must possess NETMBX privilege.

Examples
X.25 Code Example In the following example, the 5–byte function control block is at address
FUNC_BUF. The descriptor of the network process declaration block is at address DEC_BUF. The
channel to the network device is PSI_CHAN.

  ; Declaring the data:
  PSI_CHAN:
             .BLKW   1                  ; Mailbox channel
  IO_STATUS:
             .BLKQ   1                  ; I/O status block
  FUNC_DESC:                            ;Function block descriptor
            .LONG   5                   ;Length
            .ADDRESS FUNC_BUF           ;Address
  FUNC_BUF:                             ;Function block
            .BYTE NFB$C_DECLNAME
            .LONG   0
  DEC_DESC:                             ;Declaration descriptor
            .LONG   DEC_BUF_LEN         ;Length
            .ADDRESS DEC_BUF            ;Address
  DEC_BUF:                              ;Declaration block
  ACCLVL:
            .WORD   ACCLVL_LEN          ;Length field
            .WORD   PSI$C_NTD_ACCLVL    ;Type field
            .ASCIC  "X25L3"             ;String
  ACCLVL_LEN =  .-ACCLVL
  ;Item list to match called address extension of A15
  ;
  EXTMSK:    .WORD   EXTMSK_LEN         ;Item length
             .WORD   PSI$C_NTD_EXTMSK   ;Item type
             .BYTE   EXTMSK_COUNT       ;Byte count for "counted
                                        ;string"
EXTMSK_STR: .BYTE   3                   ;Semi-octet count
             .BYTE   ^FF                ;First two semi-octets
             .BYTE   ^XF0               ;Third semi-octet
EXTMSK_COUNT=.-EXTMSK_STR
EXTMSK_LEN  =.-EXTMSK
EXTVAL:    .WORD   EXTVAL_LEN           ;Item length
           .WORD   PSI$C_NTD_EXTVAL     ;Item type
           .BYTE   EXTVAL_COUNT         ;Byte count for "counted
                                        ;string"
EXTVAL_STR: .BYTE 3                     ;Count in semi-octets
            .BYTE ^XA1                  ;First two semi-octets
            .BYTE ^X50                  ;Third semi-octet/
  EXTVAL_COUNT=.-EXTVAL_STR
  EXTVAL_LEN =.-EXTVAL
DEC_BUF_LEN =.-DEC_BUF
; Using the System Service:
$QIOW_S -                        ; Issue QIO and wait
        CHAN = PSI_CHAN,-        ; to the network device
        FUNC = #IO$_ACPCONTROL-  ; Function is ACP control
        IOSB = IO_STATUS,-       ; I/O status block

35



Chapter 2. Common System Services

        P1 = FUNC_DESC,-         ; Function descriptor address
        P2 = #DEC_DESC           ; Process declaration
                                 ; descriptor address

X.29 Code Example In this example, the QIO with function code IO$_ ACPCONTROL is used
to tell X.25 for OpenVMS to accept all X.29 calls. The 5– byte function control block is at address
DECL_BUF. The descriptor of the network process declaration block is at address NPDB_DESC. The
channel to the network device is NW_CHAN.

NW_CHAN:
  .BLKW  1                      ; Channel to NW
DECL_DESC:
  .LONG  5                      ; Five byte buffer
  .ADDRESS DECL_BUF             ; Address of buffer
DECL_BUF:
  .BYTE  NFB$C_DECLNAME         ; function type
  .LONG  0                      ; parameter
NPDB_DESC:                      ; Network Process Declaration
                                ; Buffer descriptor
  .LONG NPD_BUF_LEN             ; Size of buffer
  .ADDRESS NPD_BUF              ; Address of buffer
NPD_BUF:
NPD_ITEM1:
  .WORD  NPD_ITEM1_LEN          ; Length of first item
  .WORD  PSI$C_NTD_ACCLVL       ; Access Level
  .ASCIC  /X29/                 ; ASCII counted string
NPD_ITEM1_LEN = . - NPD_ITEM1   ; Calculate the size in words
NPD_BUF_LEN = . - NPD_BUF
;+
; Tell X.25 that we want to accept all X29 calls
;-
  $QIOW_S -                     ; Send a QIO and wait
    IOSB = IO_STATUS,-          ; I/O status block
    CHAN = NW_CHAN,-            ; NW channel
    FUNC = #IO$_ACPCONTROL,-    ; function is write
    P1 = DECL_DESC,-            ; descriptor of declname block
    P2 = #NPDB_DESC             ; descriptor of declaration block
  BSBW  IO_ERROR                ; Check system service and IOSB

Return Status

SS$_NORMAL Service completed successfully. The filter has been added to the X25
Access module.

SS$_ACCVIO The program cannot read the descriptor for argument p1 or p2; or
the item–list in the Network Process Declaration Block; or the 5–
byte block.

SS$_BADPARAM A logically incorrect item has been specified in the Network
Process Declaration Block. For example, you have attempted to
put the item code PSI$C_NTD_FLT_PRI in the Network Process
Declaration Block when the filter name (specified using the PSI
$C_NTD_FILTER item code) is associated with a static filter.

SS$_DIRFULL No more room for declared name. SS$_ILLCNTRFUNC The first
byte of the 5–byte block must be NFB$C_DECLNAME, and the
rest of the block must be zeroed.

36



Chapter 2. Common System Services

SS$_IVDEVNAM The format of the NCB is invalid, or an error was detected while
processing the NCB. See the secondary status in the IOSB.

SS$_NOMBX There is no mailbox associated with the channel on which $QIO(IO
$_ACPCONTROL) was issued.

Secondary Status Values
PSI$C_ERR_
FILTERALREADYSET

The named filter has already been claimed.

PSI$C_ERR_NOACCESS The X.25 Access module has been disabled or deleted.
PSI$C_ERR_NOL3 Internal error. Contact your local HP support representative for

information about the variety of service options available to you and
the procedures for submitting software problem reports.

$QIO(IO$_DEACCESS)
$QIO(IO$_DEACCESS) — Clear a Virtual Circuit

Purpose
The QIO system service with a function code of IO$_DEACCESS clears a switched virtual circuit or
confirms receipt of a call cleared message. For PVCs, this call closes the virtual circuit so that the PVC
can be reassigned to another process.

Note that clearing a virtual circuit can result in loss of data in either direction (see the VSI X.25 for
OpenVMS Programming Guide for details).

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],[p2],[p3],[p4],[p5],p6

Arguments
func IO$_DEACCESS
p1 Not used.
p2 Starting virtual address of quadword descriptor of the NCB. This parameter is

used only if fields for diagnostic codes or local facilities are specified.

For X.25 calls which use a PVC, do not specify p2 , because none of the NCB
fields are valid for a PVC.

p3 Not used.
p4 Not used.
p5 Not used.
p6 Unit number of the NV device.

NCB Contents
Only mandatory, optional, and ignored items are listed in the following table. Other items will generate
an error if you use them.

37



Chapter 2. Common System Services

PSI$C_NCB Item Code Meaning Notes

Optional items

CAUSE Code for PSDN clearing a call 1
DIAGCODE Diagnostic code  
LOCFAC Local PSDN facilities  
USERDATA User data field 2

Ignored items

NULL Null item identifier  

Notes
1. This field is ignored unless X.25 for OpenVMS is operating as a DCE (Data Circuit–terminating

Equipment) to connect to other DTEs outside the PSDN. X.25 for OpenVMS can operate as a DCE,
when using the ISO 8208 profile, to connect back–to–back with another DTE. DTEs cannot use
nonzero codes, but DCEs can.

2. Use this field only for fast select calls. Up to 128 bytes of user data can be specified.

Examples
X.25 Code Example In this example the system service QIO is used with function code IO
$_DEACCESS to clear the virtual circuit. The channel to the network device is PSI_CHAN.

; Declaring the data:
PSI_CHAN:
           .BLKW   1            ; Mailbox channel
IO_STATUS:
           .BLKW   4            ; I/O status block
CLEAR_NCB_DESC:
           .LONG   CLR_NCB_LEN  ; NCB length
           .ADDRESS CLR_NCB     ; NCB address
; Using the System Service:
$QIOW_S -                       ; Issue QIO and wait
         CHAN = PSI_CHAN,-      ; to the network device
         FUNC = #IO$_DEACCESS,- ; Function is clear call
         IOSB = IO_STATUS,-     ; I/O status block
         P2   = #CLEAR_NCB_DESC ; NCB descriptor address

X.29 Code Example In this example the system service QIO is used with function code IO
$_DEACCESS to clear the virtual circuit. The channel to the network device is PSI_CHAN, and the NV
device is NV_UNIT.

NW_CHAN:
.BLKW 1 ; Channel to NW
NV_UNIT:
.BLKL 1 ; NV unit number
IO_STATUS:
.BLKW 4 ; I/O status block
$QIOW_S - ; QIO and wait
IOSB = IO_STATUS,- ; I/O status block
CHAN = NW_CHAN,- ; channel to NW
FUNC = #IO$_DEACCESS,- ; function is clear call

38



Chapter 2. Common System Services

P6 = NV_UNIT ; on NV terminal
BSBW IO_ERROR ; Check system service and IOSB

Return Status
SS$_NORMAL Service successfully completed, the SVC has been cleared, or the

PVC has been closed.
SS$_ACCVIO Unable to read argument p2.
SS$_FILALRACC Invalid unit number for SVC, or PVC already in use by another

process.
SS$_IVBUFLEN The format of the NCB item–list is invalid. See the secondary status

in the IOSB.
SS$_IVDEVNAM The format of the NCB is invalid, or an error was detected while

processing the NCB. See the secondary status in the IOSB.
SS$_OPINCOMPL A previous call is still in progress on this channel.

Secondary Status Values
The secondary status values are found in the third word of the IOSB.

For OpenVMS VAX, if the first word of the IOSB contains SS$_NORMAL, the third word can contain
one or more of the following:

PSI$M_STS_LOCDTELNG Local DTE address too long—address truncated.
PSI$M_STS_PKTBAD Invalid packet size specified—nearest valid packet size chosen.
PSI$M_STS_RPOALNG RPOA item is not a multiple of 4 digits—truncated.
PSI$M_STS_THRBAD Invalid throughput class specified—nearest valid throughput class

chosen.
PSI$M_STS_USERLNG Too much user data supplied—data truncated.
PSI$M_STS_WINBAD Invalid window size specified—nearest valid window size chosen.
PSI$M_STS_WORDBAD A word facility (one of the transit delay facilities) reduced to 65,535.

If the first word of the IOSB contains SS$_ABORT or SS$_IVDEVNAM, the third word can contain
one of the following:

PSI$C_ERR_BADNAME Bad counted string parameter. This is probably due to a user–
program error.

PSI$C_ERR_BADPARM Bad parameters specified.
PSI$C_ERR_BAD_PVCNAME Internal error, contact your local HP support representative for

information about the variety of service options available to you and
the procedures for submitting software problem reports.

PSI$C_ERR_CONFLICT Conflicting items specified.
PSI$C_ERR_FACLNG Facilities too long.
PSI$C_ERR_INVEXP Invalid use of expedited data negotiation.
PSI$C_ERR_INVITEM Invalid item code.
PSI$C_ERR_INVNUM Invalid ASCII number.

39



Chapter 2. Common System Services

PSI$C_ERR_ INVTRSTDLY Invalid use of ISO end–to–end transit delay facility (PSI
$C_NCB_MAX_TRST_ DLY specified without PSI
$C_NCB_ETE_TRST_DLY, or PSI$C_NCB_ETE_TRST_DLY
specified without PSI$C_NCB_CUM_TRST_ DLY).

PSI$C_ERR_L3ERR Error returned from level 3.
PSI$C_ERR_NOLOCAL The ACP has run out of local workspace memory. Increase the size

of virtual memory.
PSI$C_ERR_NONONPAG There is insufficient free nonpaged pool to complete the request.

Increase the size of nonpaged pool and retry the request.
PSI$C_ERR_RECURLMT Recursion limit reached (probably internal error in data structures),

contact your local HP support representative for information about
the variety of service options available to you and the procedures for
submitting software problem reports.

PSI$C_ERR_UNKNOWN Unspecified internal error, contact your local HP support
representative for information about the variety of service options
available to you and the procedures for submitting software problem
reports.

PSI$C_ERR_ INVTRSTDLY Invalid use of ISO end–to–end transit delay facility (PSI
$C_NCB_MAX_TRST_ DLY specified without PSI
$C_NCB_ETE_TRST_DLY, or PSI$C_NCB_ETE_TRST_DLY
specified without PSI$C_NCB_CUM_TRST_ DLY).

If the first word of the IOSB contains any status value other than SS$_ NORMAL, SS$_ABORT, or SS
$_IVDEVNAM, the contents of the third word are meaningless.

$QIO(IO$_READVBLK)
$QIO(IO$_READVBLK) — Receive Data

Purpose
$QIO(IO$_READVBLK) is used in programs to receive data transmitted from a remote DTE over the
virtual circuit.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], p1,p2,[p3],[p4],[p5],[p6]

Arguments
func IO$_READVBLK
p1 Buffer address.
p2 Buffer length in bytes.
p3 Not used.
p4 Not used.
p5 Not used.
p6 Not used.

40



Chapter 2. Common System Services

Modifiers
IO$M_NOW

Use this modifier to determine whether a message or part of a message has been received. The
request with this modifier always completes immediately. If a message is available, the request
completes with a status of SS$_NORMAL. If no message has been received, the request completes
with a status of SS$_NODATA.

Example
In the following example, IO$_READVBLK needs to know the address and the size of the buffer where
it places incoming data. The address of the buffer is READBUF and the size is READBUFSIZ. The
channel to the network device is NW_CHAN.

; Declaring the data:
NW_CHAN:
           .BLKW   1                ; Network channel
IO_STATUS:
           .BLKW   4                ; I/O status block
READBUF:
           .BLKB   200              ; Buffer
          READBUFSIZ = .-READBUF

; Using the System Service:
$QIOW_S -                       ; Issue QIO and wait
        CHAN = NW_CHAN,-        ; to NW
        FUNC = #IO$_READVBLK,-  ; Function is read
        IOSB = IO_STATUS        ; I/O status block
        P1 = READBUF,-          ; Buffer address
        P2 = #READBUFSIZE       ; and size

Return Status
SS$_NORMAL Service successfully completed, data received.
SS$_ACCVIO Cannot write to buffer described by arguments p1 and p2.
SS$_CLEARED The virtual circuit was cleared while this request was being

processed, or the circuit was in the process of being cleared when
you issued the request.

SS$_FILNOTACC A virtual circuit does not exist on this channel.
SS$_MEDOFL The PVC has been restarted. Issue a QIO system service call with

a function code of IO$_NETCONTROL and a parameter of PSI
$K_RESTART to confirm the restart and allow normal operation of
the PVC.

SS$_NODATA No data has been received (IO$M_NOW only).
SS$_RESET The virtual circuit was reset while this request was being processed,

or the circuit was in the process of being reset when you issued the
request.

Secondary Status Values
The secondary status values are found in the third word of the IOSB.

41



Chapter 2. Common System Services

If the first word of the IOSB contains SS$_NORMAL, the third word can contain one or more of the
following:

PSI$M_QUALIFIED The data was a qualified message.
PSI$M_MOREDATA The operation (or request) completed before a packet (with the more

data bit not set) was received. This may occur either because the
buffer was not large enough to receive all the packets of a message,
or because the request specified the IO$M_NOW modifier.

If the first word of the IOSB contains any other status value, the content of the third word is undefined.

$QIO(IO$_WRITEVBLK)
$QIO(IO$_WRITEVBLK) — Transmit Data

Purpose
$QIO(IO$_WRITEVBLK) is used in programs to transmit data over a virtual circuit.

Note that if your last QIO transmitted data with the IO$M_MORE qualifier, you can use $QIO(IO
$_WRITEVBLK) with a zero data packet to send the remaining data from the previous QIO. Otherwise,
if you send a zero data packet, $QIO(IO$_WRITEVBLK) will complete with a success status, but no
data will be sent.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], p1,p2 ,[p3],[p4],[p5],[p6]

Arguments
func IO$_WRITEVBLK
p1 Buffer address.
p2 Buffer length in bytes (maximum is 16,383).
p3 Not used.
p4 Not used.
p5 Not used.
p6 Not used.

Modifiers
IO$M_MORE

Use this modifier if you want to associate the data of this IO$_ WRITEVBLK call with the data of
the next IO$_WRITEVBLK call; that is, to indicate that more of the data message is to follow. Use
this modifier to show that more of your data message is to follow with the next IO$_WRITEVBLK
call. See Note.

IO$M_QUALIFIED

Use this modifier to distinguish a qualified message. Use qualified messages to specify a message
which is different from usual; for example, a control message during a file transfer.

42



Chapter 2. Common System Services

Note

X.25 for OpenVMS sends packets of data when either of the following conditions is satisfied:

● A packet is full.

● You issue a QIO IO$_WRITEVBLK without the IO$M_MORE modifier. This indicates the end of
a message to X.25 for OpenVMS.

For example, with a packet size of 128 bytes:

● If you use the IO$_WRITEVBLK operation without the IO$M_MORE modifier to transmit a
message with buffer length of 20 bytes, X.25 for OpenVMS sends a packet of 20 bytes.

● If you use the IO$_WRITEVBLK operation without the IO$M_MORE modifier to transmit a
message with buffer length of 200 bytes, X.25 for OpenVMS sends:

○ A packet of 128 bytes, which includes the more data bit

○ A packet of 72 bytes

● If you use the IO$_WRITEVBLK operation with the IO$M_MORE modifier to transmit a message
with buffer length of 200 bytes, X.25 for OpenVMS sends a packet of 128 bytes, and starts to fill the
next packet.

● If you request three IO$_WRITEVBLK operations, each with a buffer length of 20 bytes and the IO
$M_MORE modifier, followed by an IO$_ WRITEVBLK operation with a buffer length of 20 bytes
and no IO$M_ MORE modifier, X.25 for OpenVMS sends one packet of 80 bytes.

Example
In the following example, IO$_WRITEVBLK needs the address and the length of the data to be
transmitted. Here, the address is in Register 2 (R2) and the length in Register 3 (R3). The channel to the
network device is PSI_CHAN.

; Declaring the data:
PSI_CHAN:
           .BLKW   1               ; Channel
IO_STATUS:
           .BLKW   4               ; I/O status block
                                   ; Using the System Service:
$QIOW_S -                          ; Issue a QIO and wait
        CHAN = PSI_CHAN,-          ; to the network device
        FUNC = #IO$_WRITEVBLK,-    ; Function is write
        IOSB = IO_STATUS,-         ; I/O status block
        P1 = (R2),-                ; Buffer address
        P2 = R3                    ; and size

Return Status
SS$_NORMAL Service successfully completed, buffer has been accepted for

transmission.
SS$_ACCVIO The program does not have read access to the buffer, or cannot read

all the buffer described by arguments p1 and p2.

43



Chapter 2. Common System Services

SS$_CLEARED The virtual circuit was cleared while this request was being
processed, or the circuit was in the process of being cleared when
you issued the request.

SS$_FILNOTACC A virtual circuit does not exist on this channel.
SS$_MEDOFL The PVC has been restarted. Issue a QIO system service call with

a function code of IO$_NETCONTROL and a parameter of PSI
$K_RESTART to confirm the restart and allow normal operation of
the PVC.

SS$_RESET The virtual circuit was reset while this request was being processed,
or the circuit was in the process of being reset when you issued the
request.

44



Chapter 3. X.25 System Services
Table 3.1 summarizes the system services specific to X.25 programming. These services are detailed in
the remainder of this chapter.

Table 3.1. System Services Specific to X.25 Programming

System Service Description

$QIO(IO$_NETCONTROL, PSI$K_INTACK) Confirms Receipt of an Interrupt
$QIO(IO$_NETCONTROL, PSI$K_INTERRUPT) Transmits an Interrupt
$QIO(IO$_NETCONTROL, PSI$K_RESET) Resets a Virtual Circuit or Confirms Receipt

of a Reset
$QIO(IO$_NETCONTROL, PSI$K_RESTART) Confirms Receipt of a Restart

$QIO(IO$_NETCONTROL, PSI$K_INTACK)
$QIO(IO$_NETCONTROL, PSI$K_INTACK) — Confirm Receipt of an Interrupt

Purpose
The QIO system service with a function code of IO$_NETCONTROL and a subfunction of PSI
$K_INTACK confirms the receipt of an interrupt.

This service is only valid for X.25 calls. For X.29 calls, the NV device automatically acknowledges
interrupts.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],[p2],[p3],p4,[p5],[p6]

Arguments
func IO$_NETCONTROL
p1 Not used.
p2 Not used.
p3 Not used.
p4 Network control subfunction, PSI$K_INTACK, for confirming an interrupt.
p5 Not used.
p6 Unit number of the NV device. This must be zero in X.25 programs. The

default value is zero.

Example
In the following example, the subfunction of the system service call confirms the receipt of an interrupt
—the subfunction is expressed in p4. The channel to the network device is INT_CHAN.

; Declaring the data:

45



Chapter 3. X.25 System Services

INT_CHAN:
           .BLKW   1             ; Network channel
IO_STATUS:
           .BLKW   4             ; I/O status block
                                 ; Using the System Service:
$QIOW_S -                        ; Issue QIO and wait
        CHAN = INT_CHAN,-        ; to the network
        FUNC = #IO$_NETCONTROL,- ; Function is network
                                 ; control
        IOSB = IO_STATUS,-       ; I/O status block
        P4 = #PSI$K_INTACK       ; Subfunction is confirm
                                 ; interrupt received

Return Status
SS$_NORMAL Service successfully completed, interrupt has been confirmed.
SS$_CLEARED The virtual circuit was cleared while this request was being

processed, or the circuit was in the process of being cleared when
you issued the request.

SS$_FILNOTACC A virtual circuit does not exist on this channel.
SS$_MEDOFL The PVC has been restarted. Issue a QIO system service call with

a function code of IO$_NETCONTROL and a parameter of PSI
$K_RESTART to confirm the restart and allow normal operation of
the PVC.

SS$_NOSOLICIT No interrupt message has been received.
SS$_RESET The virtual circuit was reset while this request was being processed,

or the circuit was in the process of being reset when you issued the
request.

$QIO(IO$_NETCONTROL, PSI$K_INTERRUPT)
$QIO(IO$_NETCONTROL, PSI$K_INTERRUPT) — Transmit an Interrupt

Purpose
The QIO system service with a function code of IO$_NETCONTROL and a subfunction of PSI
$K_INTERRUPT sends an interrupt over the virtual circuit.

Only one interrupt in each direction can be in progress over a virtual circuit at any time. Once you have
sent an interrupt, it is not possible to send another until the remote DTE confirms receipt of the first.
This is indicated by completion of the IO$_NETCONTROL operation that you used to send the first
interrupt.

Note that a single interrupt may be in progress in each direction. Thus, you may receive an interrupt, and
possibly confirm receipt of this incoming interrupt while awaiting confirmation of an outgoing one.

This means that cooperating processes could deadlock if they do not allow asynchronous code to
perform an acknowledgment whilst waiting for a synchronous IO$_NETCONTROL operation to
complete.

This service is only valid for X.25 calls. In X.29 calls, the NV device automatically sends interrupts as
required by the X.29 protocol.

46



Chapter 3. X.25 System Services

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], p1,p2,[p3],p4,[p5],[p6]

Arguments

func IO$_NETCONTROL
p1 Buffer address.
p2 Buffer length in bytes. Interrupts can be up to 32 octets long (depending on the

PSDN), though most PSDNs restrict interrupts to one byte.
p3 Not used.
p4 Network control subfunction, PSI$K_INTERRUPT, for transmitting an

interrupt.
p5 Not used.
p6 Not used.

Example
In the following example, the subfunction of the system service call transmits an interrupt—the
subfunction is expressed in p4. The channel to the network device is INT_CHAN. The interrupt buffer is
found at address INTBUF and its size is INTBUFSIZ.

; Declaring the data:
INT_CHAN:
           .BLKW   1             ; Network channel
IO_STATUS:
           .BLKW   4             ; I/O status block
INTBUF:
           .BLKB   10            ; Interrupt buffer
           INTBUFSIZ = .-INTBUF
; Using the System Service:
$QIOW_S -                        ; Issue QIO and wait
        CHAN = INT_CHAN,-        ; to the network
        FUNC = #IO$_NETCONTROL-  ; Function is network
                                 ; control
        IOSB = IO_STATUS,-       ; I/O status block
        P1 = INTBUF,-            ; Buffer address
        P2 = #INTBUFSIZ          ; and size
        P4 = #PSI$K_INTERRUPT    ; Subfunction is interrupt

Return Status

SS$_NORMAL Service successfully completed, interrupt accepted for transmission.
SS$_ACCVIO The program does not have read access to the buffer.
SS$_CLEARED The virtual circuit was cleared while this request was being

processed, or the circuit was in the process of being cleared when
you issued the request.

SS$_DATAOVERUN More user data than allowed by PSDN. If the PSI
$C_NCB_EXPEDITE item has been used during call set up with

47



Chapter 3. X.25 System Services

a value of 0, this error is returned for all values of p2 (Refer to
Appendix C).

SS$_FILNOTACC A virtual circuit does not exist for this channel.
SS$_MEDOFL The PVC has been restarted. Issue a QIO system service call with

a function code of IO$_NETCONTROL and a parameter of PSI
$K_RESTART to confirm the restart and allow normal operation of
the PVC.

SS$_OPINCOMPL A previous transmit interrupt request is still in progress.
SS$_RESET The virtual circuit was reset while this request was being processed,

or the circuit was in the process of being reset when you issued the
request.

$QIO(IO$_NETCONTROL, PSI$K_RESET)
$QIO(IO$_NETCONTROL, PSI$K_RESET) — Reset a Virtual Circuit or Confirm the Receipt of a
Reset

Purpose
The QIO system service with a function code of IO$_NETCONTROL and a subfunction of PSI
$K_RESET resets a virtual circuit or confirms the receipt of a reset. The service resets a virtual circuit if
no reset is outstanding, or confirms the receipt of a reset if one is outstanding. All pending messages are
discarded if the virtual circuit is reset.

A return status of SS$_NORMAL does not guarantee that the remote DTE receives the diagnostic code.
For example, the remote DTE may not receive the diagnostic code if a collision of resets occurs within
the PSDN.

This service is only used for X.25 calls. In X.29 calls, the NV device automatically handles resets.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],[p2], [p3],p4,[p5],[p6]

Arguments
func IO$_NETCONTROL
p1 Not used.
p2 Not used.
p3 Diagnostic and cause code in a reset operation, or not used in a reset confirm

operation.

The diagnostic code is specified in the low–order byte, parameter p3, and the
cause code in the next byte. The cause code is ignored unless the ISO8208
profile is being used.

p4 Network control subfunction, PSI$K_RESET, for resetting or confirming the
reset of a virtual circuit.

p5 Not used.
p6 Not used.

48



Chapter 3. X.25 System Services

Example
Here, the subfunction of the system service call transmits a reset or confirms reception of a reset—
the subfunction is expressed in p4. The channel to the network device is NW_CHAN. Because p3 is not
specified, the diagnostic code defaults to 0.

; Declaring the data:
NW_CHAN:
           .BLKW   1             ; Network channel
IO_STATUS:
           .BLKW   4             ; I/O status block
; Using the System Service:
$QIOW_S -                        ; Issue QIO and wait
        CHAN = NW_CHAN,-         ; to NW
        FUNC = #IO$_NETCONTROL-  ; Function is network
                                 ; control
        IOSB = IO_STATUS,-       ; I/O status block
        P4 = #PSI$K_RESET        ; Subfunction is reset

Return Status
SS$_NORMAL Service successfully queued (R0). This status indicates that the X.25

for OpenVMS software has reset the virtual circuit (and the reset has
been confirmed), or confirms the reset of the virtual circuit (IOSB).

SS$_CLEARED The virtual circuit was cleared while this request was being
processed, or the circuit was in the process of being cleared when
you issued the request.

SS$_FILNOTACC The virtual circuit does not exist on this channel.
SS$_MEDOFL The PVC has been restarted. Issue a QIO system service call with

a function code of IO$_NETCONTROL and a parameter of PSI
$K_RESTART to confirm the restart and allow normal operation of
the PVC.

SS$_OPINCOMPL A previous reset request is still in progress.

$QIO(IO$_NETCONTROL, PSI$K_RESTART)
$QIO(IO$_NETCONTROL, PSI$K_RESTART) — Confirm Receipt of a Restart

Purpose
The QIO system service with a function code of IO$_NETCONTROL and a subfunction of PSI
$K_RESTART confirms the receipt of a restart on a PVC.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],[p2],[p3],p4,[p5],[p6]

Arguments
func IO$_NETCONTROL

49



Chapter 3. X.25 System Services

p1 Not used.
p2 Not used.
p3 Not used.
p4 Network control subfunction, PSI$K_RESTART, for confirming the restart of a

virtual circuit.
p5 Not used.
p6 Not used.

Example
The subfunction of the system service call confirms the receipt of a restart. The subfunction is named in
p4. The channel to the network device is PVC_CHAN.

; Declaring the data:
PVC_CHAN:
           .BLKW   1              ; Network channel
IO_STATUS:
           .BLKW   4              ; I/O status block
; Using the System Service:
$QIOW_S -                         ; Issue QIO and wait
        CHAN = PVC_CHAN,-         ; to the circuit
        FUNC = #IO$_NETCONTROL,-  ; Function is network
                                  ; control
        IOSB = IO_STATUS,-        ; I/O status block
        P4 = #PSI$K_RESTART       ; Subfunction is restart

Return Status
SS$_NORMAL Service successfully completed, restart has been confirmed.
SS$_FILNOTACC A virtual circuit does not exist for this channel.
SS$_NOSOLICIT No restart has been received.
SS$_RESET The virtual circuit was reset while this request was being processed,

or the circuit was in the process of being reset when you issued the
request.

50



Chapter 4. X.29 System Services
Table 4.1 summarizes the system services specific to X.29 programming. These services are detailed in
the remainder of this chapter.

For X.29 programming, functions supported by the terminal driver are available at the QIO interface. For
details of QIO functions to the NV device, refer to the OpenVMS device driver documentation.

Table 4.1. System Services Specific to X.29 Programming

System Service Description

$QIO(IO$_NETCONTROL, PSI$K_X29_READ) Reads X.29 Terminal Characteristics
READ Subfunctions:
PSI$K_X29_BREAK_ACTION Returns the NV Action Descriptor Block
PSI$K_X29_HANGUP_PARAMS Reads the hangup PAD parameter template into a

user–specified buffer
PSI$K_X29_HOLD_TIMER Returns the value of the Hold Timer
PSI$K_X29_HOST_ECHO_PARAMS Reads the host–echo PAD parameter template into

a user–specified buffer
PSI$K_X29_INT_ACTION Returns the NV Action Descriptor Block
PSI$K_X29_LOCAL_ECHO_PARAMS Reads the local–echo PAD parameter template into

a user–specified buffer
PSI$K_X29_PAD_PARAMS Returns the PAD Parameter List into the specified

buffer
PSI$K_X29_TEMP_NOHANG Returns the setting of the TEMP_NOHANG flag.
$QIO(IO$_NETCONTROL, PSI
$K_X29_READ_SPECIFIC)

Reads Specific X.29 Parameters

READ_SPECIFIC Subfunction:
PSI$K_X29_PAD_PARAMS Returns specific PAD parameters into the specified

buffer
$QIO(IO$_NETCONTROL, PSI$K_X29_SET) Sets X.29 Terminal Characteristics
SET Subfunctions:
PSI$K_X29_BREAK_ACTION Defines the action, or series of actions, that NV

is to take when an "Indication–of–Break" X.29
message is received

PSI$K_X29_HANGUP_PARAMS Sets the hangup PAD parameter template
PSI$K_X29_HOST_ECHO_PARAMS Sets the host–echo PAD parameter template
PSI$K_X29_HOLD_TIMER Sets the Hold Timer to units of 1/10 of a second
PSI$K_X29_INT_ACTION Sets the actions to be taken when an interrupt

issued at the X.29 terminal is received as an X.25
Interrupt

PSI$K_X29_LOCAL_ECHO_PARAMS Sets the local–echo PAD parameter template
PSI$K_X29_PAD_PARAMS Assigns values to specified PAD parameters

51



Chapter 4. X.29 System Services

System Service Description

PSI$K_X29_PAD_RESELECTION Sends a PAD reselection message to the remote
PAD

PSI$K_X29_TEMP_NOHANG Sets the X.29 terminal to enable
TEMP_NOHANG

$QIO(IO$_NETCONTROL, PSI$K_X29_READ)
$QIO(IO$_NETCONTROL, PSI$K_X29_READ) — Read X.29 Terminal Characteristics

Purpose
$QIO(IO$_NETCONTROL, PSI$K_X29_READ) is used in X.29 programs to read PAD parameters
and NV terminal characteristics.

This QIO performs an operation equivalent to the DCL command SHOW TERMINAL/X29.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], p1,p2,p3,p4,[p5],p6

Arguments

func IO$_NETCONTROL
p1 Buffer address.
p2 Buffer size in bytes. The length of the buffer depends on the parameter p3.
p3 One of the following Network Control Subfunctions:

PSI$K_X29_BREAK_ACTION
PSI$K_X29_HANGUP_PARAMS
PSI$K_X29_HOLD_TIMER
PSI$K_X29_HOST_ECHO_PARAMS
PSI$K_X29_INT_ACTION
PSI$K_X29_LOCAL_ECHO_PARAMS
PSI$K_X29_PAD_PARAMS
PSI$K_X29_TEMP_NOHANG

These subfunctions are described in subsequent sections.
p4 PSI$K_X29_READ
p5 Not used.
p6 Unit number of the NV device.

PSI$K_X29_BREAK_ACTION
PSI$K_X29_BREAK_ACTION — READ Subfunction

52



Chapter 4. X.29 System Services

Purpose
PSI$K_X29_BREAK_ACTION returns the NV Action Descriptor Block. The block contains details of
the actions the NV device will take on receiving an Indication–of–break from the X.29 terminal.

The buffer size should be PSI$K_X29_ACTION_LENGTH (head = 20 bytes) to ensure the buffer is
allocated sufficient space to hold the NV Action Descriptor Block that is returned.

Refer to the VSI X.25 for OpenVMS Programming Guide for a description of the NV Action Descriptor
Block.

Example
NW_CHAN:
  .BLKW   1              ; Channel to NW
NV_UNIT:
  .BLKL   1              ; NV unit number
IO_STATUS:
  .BLKW   4              ;I/O Status block
DESC_BLOCK:
  .BLKB   PSI$K_X29_ACTION_LENGTH        ; Action Descriptor block
  $QIOW_S -                              ; Issue QIO and wait
    IOSB = IO_STATUS,-                   ; I/O Status block
    CHAN = NW_CHAN,-                     ; Control channel to NW
    FUNC = #IO$_NETCONTROL,-             ; Function is NETCONTROL
    P1 = DESC_BLOCK,-                    ; address of descriptor block
    P2 = #PSI$K_X29_ACTION_LENGTH,-      ; length of descriptor block
    P3 = #PSI$K_X29_BREAK_ACTION,-       ; Subfunction
    P4 = #PSI$K_X29_READ,-               ; read data
    P6 = NV_UNIT                         ; NV unit number
  BSBW IO_ERROR    ; check system service and IOSB

Return Status

SS$_NORMAL Service completed successfully. Break actions are returned in buffer.
SS$_BUFFEROVF Buffer specified in p1 is too small to hold the data returned.

PSI$K_X29_HANGUP_PARAMS
PSI$K_X29_HANGUP_PARAMS — READ Subfunction

Purpose
This subfunction reads the hangup PAD parameter template into a user–specified buffer.

The hangup PAD parameter template defines PAD characteristics after an X.29 call has been cleared.

A buffer size of 256 bytes is normally adequate. This allows for 32 parameters.

Refer to the VSI X.25 for OpenVMS Utilities Guide for a description of PAD parameter templates.

53



Chapter 4. X.29 System Services

Example
NW_CHAN:
  .BLKW   1             ; Channel to NW
IO_STATUS:              ; I/O status block
  .BLKW   4
TEMPLATE_ENTRIES = 32   ; Allow for 32 parameters
TEMPLATE_BUFFER:        ; Buffer to manipulate
  .BLKB  TEMPLATE_ENTRIES * PSI$K_X29_PARAM_LENGTH
TEMPLATE_BUFFER_LEN = .-TEMPLATE_BUFFER    ; template
; Read the hangup PAD parameter template
;
;-
  $QIOW_S -                     ; Issue QIO and wait
    CHAN = NW_CHAN,-            ; to network device
    FUNC = #IO$_NETCONTROL,-    ; function is network control
    IOSB = IO_STATUS,-          ; I/O status block
    P1 = TEMPLATE_BUFFER,-      ; address of buffer
    P2 = #TEMPLATE_BUFFER_LEN,- ; length of buffer
    P3 = #PSI$K_X29_HANGUP_PARAMS,-
    -                           ; read subfunction specifies
    -                           ; which template to manipulate
    P4 = #PSI$K_X29_READ,-      ; NV read operation
    P6 = NV_UNIT                ; NV unit number
  BSBW IO_ERROR       ; Check for I/O error
;+

Return Status

SS$_NORMAL Service completed successfully. Hold Timer value is returned.
SS$_BUFFEROVF Buffer specified in p1 is too small to hold the value returned.

PSI$K_X29_HOLD_TIMER
PSI$K_X29_HOLD_TIMER — READ Subfunction

Purpose
This parameter returns the value of the Hold Timer into the specified buffer.

The timer value is in units of 1/10 of a second.

The buffer size should be set to 4 bytes to ensure the buffer is allocated sufficient space to hold the timer
value returned.

Example
NW_CHAN:
  .BLKW   1      ; Channel to NW
NV_UNIT:
  .BLKL   1      ; NV unit number
IO_STATUS:

54



Chapter 4. X.29 System Services

  .BLKW   4      ; I/O status block
TIMER:
  .BLKB   4      ; Hold Timer buffer
         $QIOW_S -                             ; Issue QIO and wait
                 IOSB = IO_STATUS,-            ; I/O Status Block
                 CHAN = NW_CHAN,-              ; Control channel to NW
                 FUNC = #IO$_NETCONTROL,-      ;Function is NETCONTROL
                 P1   = TIMER                  ; Address of output
                                               ; buffer
                 P2   = #4                     ; Length of output
                                               ; buffer
                 P3   = #PSI$K_HOLD_TIMER,-    ; Subfunction
                 P4   = #PSI$K_X29_READ,-      ; Read data
                 P6   = NV_UNIT                ; NV Unit number
          BSBW   IO_ERROR                      ; Check system service
                                               ; and IOSB

Return Status

SS$_NORMAL Service completed successfully. Hold Timer value is returned.
SS$_BUFFEROVF Buffer specified in p1 is too small to hold the value returned.

PSI$K_X29_HOST_ECHO_PARAMS
PSI$K_X29_HOST_ECHO_PARAMS — READ Subfunction

Purpose
This subfunction reads the host–echo PAD parameter template into a user– specified buffer.

The host–echo PAD parameter template defines characteristics of the PAD in host–echo mode.

A buffer size of 256 bytes is normally adequate. This allows for 32 PAD parameters.

PAD parameter templates are described in the VSI X.25 for OpenVMS Utilities Guide.

Example
NW_CHAN:
  .BLKW   1     ; Channel to NW
NV_UNIT:
  .BLKL 1       ; NV unit number
IO_STATUS:      ; I/O status block
  .BLKQ   1
TEMPLATE_ENTRIES = 32           ; Allow for 32 parameters

TEMPLATE_BUFFER:                ; Buffer to manipulate
  .BLKB  TEMPLATE_ENTRIES * PSI$K_X29_PARAM_LENGTH
TEMPLATE_BUFFER_LEN = .-TEMPLATE_BUFFER    ; template

; Read the Host-echo PAD parameter template
;

55



Chapter 4. X.29 System Services

;-
  $QIOW_S -                     ; Issue QIO and wait
    CHAN = NW_CHAN,-            ; to network device
    FUNC = #IO$_NETCONTROL,-    ; function is network control
    IOSB = IO_STATUS,-          ; I/O status block
    P1 = TEMPLATE_BUFFER,-      ; address of buffer
    P2 = #TEMPLATE_BUFFER_LEN,- ; length of buffer
    P3 = #PSI$K_X29_HOST_ECHO_PARAMS,-
    -                           ; read subfunction specifies
    -                           ; which template to manipulate
    P4 = #PSI$K_X29_READ,-      ; NV read operation
    P6 = NV_UNIT                ; NV unit number
  BSBW IO_ERROR       ; Check for I/O error
;+

Return Status

SS$_NORMAL Service completed successfully.
SS$_BUFFEROVF Buffer specified in p1 is too small to hold the template.

PSI$K_X29_INT_ACTION
PSI$K_X29_INT_ACTION — READ Subfunction

Purpose
This parameter returns the NV Action Descriptor Block. This contains details of the actions the NV
device will take on receiving an Interrupt message from the X.29 terminal.

The buffer size should be PSI$K_X29_ACTION_LENGTH (= 20 bytes) to ensure the buffer is allocated
sufficient space to hold the NV Action Descriptor Block that is returned.

For a description of the NV Action Descriptor Block, refer to the VSI X.25 for OpenVMS Programming
Guide.

Example
NW_CHAN:
  .BLKW   1      ; Channel to NW
NV_UNIT:
  .BLKL   1      ; NV unit number
IO_STATUS:
  .BLKW   4      ;I/O Status block
DESC_BLOCK:
  .BLKB   PSI$K_X29_ACTION_LENGTH  ; Action Descriptor block
         $QIOW_S -                        ; Issue QIO and wait
          IOSB = IO_STATUS,-              ; I/O Status block
          CHAN = NW_CHAN,-                ; Control channel to NW
          FUNC = #IO$_NETCONTROL,-        ; Function is NETCONTROL
          P1 = DESC_BLOCK,-               ; address of descriptor block
          P2 = #PSI$K_X29_ACTION_LENGTH,- ; length of descriptor block
          P3 = #PSI$K_X29_INT_ACTION,-    ; Subfunction

56



Chapter 4. X.29 System Services

          P4 = #PSI$K_X29_READ,-          ; read data
          P6 = NV_UNIT                    ; NV unit number
         BSBW  IO_ERROR  ; check system service and IOSB

Return Status

SS$_NORMAL Service completed successfully. Interrupt actions are returned in
buffer.

SS$_BUFFEROVF Buffer specified in p1 is too small to hold the descriptor returned.

PSI$K_X29_LOCAL_ECHO_PARAMS
PSI$K_X29_LOCAL_ECHO_PARAMS — READ Subfunction

Purpose
This subfunction reads the local–echo PAD parameter template into a user– specified buffer.

The local–echo PAD parameter template defines characteristics of the PAD in local–echo mode.

A buffer size of 256 bytes is normally adequate. This allows for 32 PAD parameters.

PAD parameter templates are described in the VSI X.25 for OpenVMS Utilities Guide.

Example

NW_CHAN:
  .BLKW   1 ; Channel to NW
NV_UNIT:
  .BLKL   1 ; NV unit number
IO_STATUS: ; I/O status block
  .BLKQ   1
TEMPLATE_ENTRIES = 32 ; Allow for 32 parameters
TEMPLATE_BUFFER:       ; Buffer to manipulate
  .BLKB TEMPLATE_ENTRIES * PSI$K_X29_PARAM_LENGTH
TEMPLATE_BUFFER_LEN = .-TEMPLATE_BUFFER ; template
; Read the Local-echo PAD parameter template
;
;-
$QIOW_S - ; Issue QIO and wait
CHAN = NW_CHAN,- ; to network device
FUNC = #IO$_NETCONTROL,- ; function is network control
IOSB = IO_STATUS,- ; I/O status block
P1 = TEMPLATE_BUFFER,- ; address of buffer
P2 = #TEMPLATE_BUFFER_LEN,- ; length of buffer
P3 = #PSI$K_X29_LOCAL_ECHO_PARAMS,-
- ; read subfunction specifies
- ; which template
P4 = #PSI$K_X29_READ,- ; NV read operation
P6 = NV_UNIT ; NV unit number
BSBW IO_ERROR ; Check for I/O error

57



Chapter 4. X.29 System Services

;+

Return Status
SS$_NORMAL Service completed successfully.
SS$_BUFFEROVF Buffer specified in p1 is too small to hold the template.

PSI$K_X29_PAD_PARAMS
PSI$K_X29_PAD_PARAMS — READ Subfunction

Purpose
This subfunction returns the PAD Parameter List into the specified buffer.

The PAD Parameter List contains details of PAD parameters read. The actual length of the list is
returned in the IOSB.

A buffer size of 512 is normally adequate. This allows for 64 PAD parameters.

Refer to the VSI X.25 for OpenVMS Programming Guide for a description of the PAD Parameter List.
Refer to Appendix E for a complete description of the PAD parameters.

The following example and Figure 4.1 show:

● How the NV device (at the host DTE) communicates with a PAD.

● The contents of Register 0 (R0).

● The contents of the I/O Status Block (IOSB).

Example
NW_CHAN:
  .BLKW   1     ; Channel to NW
NV_UNIT:
  .BLKL   1     ; NV unit number
IO_STATUS:
  .BLKW   4     ;I/O Status block
PARAM_ENTRIES = 64      ; Allow for 64 parameters
PARAM_BUFFER:           ; Buffer to manipulate parameters
  .BLKB   PARAM_ENTRIES * PSI$K_X29_PARAM_LENGTH
PARAM_BUFFER_LEN = .-PARAM_BUFFER
  $QIOW_S -                     ; Issue QIO and wait
    IOSB = IO_STATUS,-          ; I/O Status block
    CHAN = NW_CHAN,-            ; Control channel to NW
    FUNC = #IO$_NETCONTROL,-    ; Function is NETCONTROL
    P1 = PARAM_BUFFER,-         ; address of Parameter List
    P2 = PARAM_BUFFER_LEN,-     ; length of Parameter List
    P3 = #PSI$K_X29_PAD_PARAMS  ; Subfunction
    P4 = #PSI$K_X29_READ,-      ;read data
    P6 = NV_UNIT                ; NV unit number
  BSBW  IO_ERROR   ; check system service and IOSB

58



Chapter 4. X.29 System Services

Figure 4.1. $QIO(IO$_NETCONTROL!PSI$K_X29_READ) Operations

Return Status
SS$_NORMAL Service completed successfully: PAD parameters are returned in

buffer supplied.
SS$_BUFFEROVF Buffer specified in p1 is too small to hold the descriptor returned.
SS$_CTRLERR A PAD error message is received in response to a message sent by

NV.
SS$_TIMEOUT No response received from PAD.

PSI$K_X29_TEMP_NOHANG
PSI$K_X29_TEMP_NOHANG — READ Subfunction

Purpose
This returns the setting of the TEMP_NOHANG flag into the buffer supplied.

Only bit 0 is used. If PSI$K_X29_TEMP_NOHANG is set, the virtual circuit will not be cleared on a
subsequent $DASSGN call.

The buffer size should be 4 to ensure the buffer is allocated sufficient space to hold the value returned.

Example
NW_CHAN:
  .BLKW  1      ; Channel to NW
TEMP_NOHANG_ON:
  .BLKL  1      ; Value of temp nohang

59



Chapter 4. X.29 System Services

NV_UNIT:
  .BLKL  1      ; NV unit number
IO_STATUS:
       .BLKW  4 ; I/O Status block
;+
; Read the temp_nohang bit
;-
  $QIOW_S  -                    ; QIO and wait
    IOSB = IO_STATUS,-          ; I/O status block
    CHAN = NW_CHAN,-            ; channel to NW
    FUNC = #IO$_NETCONTROL,-    ; function is net control
    P1 = TEMP_NOHANG_ON,-       ; output buffer
    P2 = #4,-                   ; longword
    P3 = #PSI$K_X29_TEMP_NOHANG,-; subfunction
    P4 = #PSI$K_X29_READ,-      ; NV read operation
    P6 = NV_UNIT                ; NV unit number
  BSBW IO_ERROR         ; Check system service and IOSB

Return Status
SS$_NORMAL Service completed successfully: TEMP_NOHANG flag is returned

in the buffer supplied.
SS$_BUFFEROVF The buffer specified in p1 is too small to return the data.

$QIO(IO$_NETCONTROL, PSI
$K_X29_READ_SPECIFIC)
$QIO(IO$_NETCONTROL, PSI$K_X29_READ_SPECIFIC) — Read Specific X.29 Parameters

Purpose
$QIO(IO$_NETCONTROL, PSI$K_X29_READ_SPECIFIC) is used in X.29 programs to read specific
PAD parameters.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], p1,p2,p3,p4,[p5],p6

Arguments
func IO$_NETCONTROL
p1 Buffer address.
p2 Buffer size in bytes. The length of the buffer depends on the parameter p3.
p3 The following Network Control Subfunction:

PSI$K_X29_PAD_PARAMS

The subfunction is described in the following section.
p4 PSI$K_X29_READ_SPECIFIC
p5 Not used.

60



Chapter 4. X.29 System Services

p6 Unit number of the NV device.

PSI$K_X29_PAD_PARAMS
PSI$K_X29_PAD_PARAMS — READ_SPECIFIC Subfunction

Purpose
This subfunction returns specific PAD parameters into the specified buffer.

The buffer described by p1 and p2 is read to get a list of the parameters that should be returned. NV
issues an X.29 read parameters message to the PAD, requesting the parameters listed in the buffer.

On completion of the QIO, the buffer is overwritten with the parameters returned from the PAD.

For a description of the PAD Parameter List, refer to the VSI X.25 for OpenVMS Programming Guide.
For a complete description of the PAD parameters, refer to Appendix E.

Figure 4.2 shows:

● How the NV driver (at the host DTE) communicates with a PAD.

● The contents of Register 0 (R0).

● The contents of the I/O Status Block (IOSB).

Figure 4.2. $QIO(IO$_NETCONTROL!PSI$K_X29_READ_SPECIFIC) Operations

Example
In this example, QIO(IO$_NETCONTROL) is used to read the parameters specified in
PARAM_BUFFER (ECHO and network–specific parameter 42).

61



Chapter 4. X.29 System Services

.MACRO  PAD_PARAM_ITEM  CODE, VALUE=0, ATTR=0
  .WORD  CODE           ; PSI$W_X29_PARAM_REF
  .WORD  ATTR           ; PSI$W_X29_PARAM_FLAGS
  .BYTE  VALUE          ; PSI$B_X29_PARAM_VALUE
  .BYTE  0, 0, 0        ; Must be zero
.ENDM
NW_CHAN:
  .BLKW  1              ; Channel to NW
NV_UNIT:
  .BLKL  1              ; NV unit number
IO_STATUS:              ; I/O status block
  .BLKW  4
PARAM_BUFFER:
ECHO:  PAD_PARAM_ITEM   ; find out the echo setting
    CODE=PSI$K_X29_PAR_ECHO
  PAD_PARAM_ITEM        ; Network specific parameters follow
    CODE=0, VALUE=0
PAR42:  PAD_PARAM_ITEM  ; find network specific parameter 42
    CODE=42
PARAM_BUFFER_LEN = .-PARAM_BUFFER ;

;
; Get the PAD parameters
;-
  $QIOW_S -                             ; Issue QIO and wait
    CHAN = NW_CHAN,-                    ; to network device
    FUNC = #IO$_NETCONTROL,-            ; Function is network control
    IOSB = IO_STATUS,-                  ; I/O status block
    P1 = PARAM_BUFFER,-                 ; Address of buffer
    P2 = PARAM_BUFFER_LEN,-             ; Length of buffer
    P3 = #PSI$K_X29_PAD_PARAMS,-        ; Subfunction specifies
    -                                   ; read PAD parameters
    P4 = #PSI$K_X29_READ_SPECIFIC,-     ; NV read specific operation
    P6 = NV_UNIT                        ; NV unit number
  BSBW  IO_ERROR      ; Check for I/O error

Return Status
SS$_NORMAL Service completed successfully: PAD parameters are returned in

buffer supplied.
SS$_CTRLERR A PAD error message is received in response to a message sent by

NV.
SS$_TIMEOUT No response received from PAD.

$QIO(IO$_NETCONTROL, PSI$K_X29_SET)
$QIO(IO$_NETCONTROL, PSI$K_X29_SET) — Set X.29 Terminal Characteristics

Purpose
$QIO(IO$_NETCONTROL, PSI$K_X29_SET) is used in X.29 programs to set PAD parameters and
NV terminal characteristics.

This QIO performs an operation equivalent to the DCL command SET TERMINAL/X29.

62



Chapter 4. X.29 System Services

Figure 4–3 shows:

● How the NV device (at the host DTE) communicates with a PAD.

● The contents of Register 0 (R0).

● The contents of the I/O Status Block (IOSB).

Figure 4.3. $QIO(IO$_NETCONTROL!PSI$K_X29_SET) Operations

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], p1,p2,p3,p4,[p5],p6

Arguments
func IO$_NETCONTROL
p1 Buffer address.
p2 Buffer size in bytes. The length of the buffer depends on the parameter p3.
p3 One of the following Network Control Subfunctions:

PSI$K_X29_BREAK_ACTION
PSI$K_X29_HANGUP_PARAMS
PSI$K_X29_HOLD_TIMER
PSI$K_X29_HOST_ECHO_PARAMS
PSI$K_X29_INT_ACTION
PSI$K_X29_LOCAL_ECHO_PARAMS

63



Chapter 4. X.29 System Services

PSI$K_X29_PAD_PARAMS
PSI$K_X29_PAD_RESELECTION
PSI$K_X29_TEMP_NOHANG

These subfunctions are described in subsequent sections.
p4 PSI$K_X29_SET
p5 Not used.
p6 Unit number of the NV device.

PSI$K_X29_BREAK_ACTION
PSI$K_X29_BREAK_ACTION — SET Subfunction

Purpose
This parameter defines the action, or series of actions, that NV is to take when an Indication–of–break
X.29 message is received.

Usually, PSI$K_X29_BREAK_ACTION is specified for when you issue a BREAK command while
using the host–based PAD.

Parameter p2 specifies the size of the NV Action Descriptor Block. Set p2 either to PSI
$K_X29_ACTION_LENGTH (= 20 bytes), or to a value between 4 and 20 bytes.

Set one or more of the following bits in the 4–byte Action flag (byte 0 to 3):

PSI$V_X29_ACTION_RESET To reset the circuit.
PSI$V_X29_ACTION_PURGE To purge all input in the NV device.
PSI$V_X29_ACTION_CLEAR To clear the call.

Only the first three bits of byte 0 are used.

If you require other actions to be taken, set the counted string PSI$T_X29_ ACTION_STRING in the
NV Action Descriptor Block.

For details of the NV Action Descriptor Block, refer to the VSI X.25 for OpenVMS Programming Guide.

Example
NW_CHAN:
  .BLKW  1      ; Channel to NW
NV_UNIT:
  .BLKL  1      ; NV Unit number
IO_STATUS:
  .BLKW  4      ; I/O Status block
DESC_BLOCK:
  .LONG  PSI$M_X29_ACTION_PURGE!- ;Descriptor block
    PSI$M_X29_ACTION_RESET
;
STRING:
  .BYTE  STRING_LENGTH-1      ;Count
  .BYTE  24                   ;^X

64



Chapter 4. X.29 System Services

  .BYTE  15                   ;^0
  STRING_LENGTH = .-STRING
  DESC_LENGTH   = .-DESC_BLOCK
;
  $QIOW_S -                   ; Issue QIO and wait
  IOSB = IO_STATUS            ; I/O Status block
  CHAN = NW_CHAN,-            ;Control channel to NW
  FUNC = #IO$_NETCONTROL,-    ;Function is NETCONTROL
  P1 = DESC_BLOCK,-           ;Address of descriptor block
  P2 = #DESC_LENGTH,-         ;Length of descriptor block
  P3 = #PSI$K_X29_BREAK_ACTION,- ;Subfunction
  P4 = #PSI$K_X29_SET,-       ;NV set data
  P6 = NV_UNIT                ;NV Unit number
;
  BSBW  IO_ERROR    ;Check system service and IOSB

Return Status
SS$_NORMAL Service completed successfully: break accepted for transmission.
SS$_ACCVIO The NV Action Descriptor Block specified in p1 cannot be read.

PSI$K_X29_HANGUP_PARAMS
PSI$K_X29_HANGUP_PARAMS — SET Subfunction

Purpose
This subfunction sets the hangup PAD parameter template.

The hangup PAD parameter template defines the PAD characteristics after an X.29 call has been cleared.

Parameter p2 is the size of the PAD parameter buffer. Calculate p2 as follows:

(number of PAD parameters to be set) * PSI$K_X29_PARAM_LENGTH

Refer to the VSI X.25 for OpenVMS Utilities Guide for a description of how to use PAD parameter
templates.

Example
This example sets the hangup PAD parameter template to turn on echo and editing.

.MACRO  PAD_PARAM_ITEM  CODE, VALUE=0, ATTR=0
  .WORD  CODE           ; PSI$W_X29_PARAM_REF
  .WORD  ATTR           ; PSI$W_X29_PARAM_FLAGS
  .BYTE  VALUE          ; PSI$B_X29_PARAM_VALUE
  .BYTE  0, 0, 0        ; Must be zero
.ENDM
NW_CHAN:
  .BLKW  1              ; Channel to NW
IO_STATUS:              ; I/O status block
  .BLKQ  1
TEMPLATE_BUFFER:
  PAD_PARAM_ITEM  -      ; Turn on Echo

65



Chapter 4. X.29 System Services

    CODE=PSI$K_X29_PAR_ECHO, VALUE=1
  PAD_PARAM_ITEM  -      ; Turn on Editing
    CODE=PSI$K_X29_PAR_EDIT, VALUE=1
TEMPLATE_BUFFER_LEN = .-TEMPLATE_BUFFER   ; template
;
; Set the PAD parameter template
;-
  $QIOW_S -                     ; Issue QIO and wait
    CHAN = NW_CHAN,-            ; to network device
    FUNC = #IO$_NETCONTROL,-    ; Function is net control
    IOSB = IO_STATUS,-          ; I/O status block
    P1 = TEMPLATE_BUFFER,-      ; Address of buffer
    P2 = TEMPLATE_BUFFER_LEN,-  ; Length of buffer
    P3 = #PSI$K_X29_HANGUP_PARAMS,-
    -           ; Subfunction specifies
    -           ; which template to manipulate
    P4 = #PSI$K_X29_SET,-       ; NV set operation
    P6 = NV_UNIT                ; NV unit number
  BSBW  IO_ERROR      ; Check for I/O error

Return Status
SS$_NORMAL Service completed successfully.
SS$_ACCVIO The buffer specified in p1 cannot be read.

PSI$K_X29_HOST_ECHO_PARAMS
PSI$K_X29_HOST_ECHO_PARAMS — SET Subfunction

Purpose
This subfunction sets the host–echo PAD parameter template.

The host–echo PAD parameter template defines characteristics of the PAD in host–echo mode.

Parameter p2 is the size of the PAD parameter buffer. Calculate p2 as follows:

(number of PAD parameters to be set ) * PSI$K_X29_PARAM_LENGTH

Refer to the VSI X.25 for OpenVMS Utilities Guide for a description of how to use PAD parameter
templates.

If the NV device is in host–echo mode, the NV device will consult the new template, and configure the
PAD according to the instructions in the template.

Example
This example sets the host–echo PAD parameter template so that echo and editing are turned off, the
user’s timeout value is used, and wrap and newline are turned off.

.MACRO  PAD_PARAM_ITEM  CODE, VALUE=0, ATTR=0
  .WORD  CODE           ; PSI$W_X29_PARAM_REF
  .WORD  ATTR           ; PSI$W_X29_PARAM_FLAGS
  .BYTE  VALUE          ; PSI$B_X29_PARAM_VALUE

66



Chapter 4. X.29 System Services

  .BYTE  0, 0, 0        ; Must be zero
.ENDM
NW_CHAN:
  .BLKW  1              ; Channel to NW
IO_STATUS:              ; I/O status block
  .BLKQ  1
NV_UNIT:
  .BLKL  1              ; NV unit number
TEMPLATE_BUFFER:
  PAD_PARAM_ITEM  -     ; Turn Echo off
    CODE=PSI$K_X29_PAR_ECHO, VALUE=0
  PAD_PARAM_ITEM  -     ; Turn Editing off
    CODE=PSI$K_X29_PAR_EDIT, VALUE=0
  PAD_PARAM_ITEM  -     ; Use the user’s timeout value
    CODE=PSI$K_X29_PAR_TIMEOUT, ATTR=PSI$M_X29_USER_VALUE
  PAD_PARAM_ITEM  -     ; Turn off wrap
    CODE=PSI$K_X29_PAR_WRAP, VALUE=0
  PAD_PARAM_ITEM  -     ; Turn off Newline
    CODE=PSI$K_X29_PAR_NEW_LINE, VALUE=0
TEMPLATE_BUFFER_LEN = .-TEMPLATE_BUFFER   ; template
;
; Set the PAD parameter template
;-
  $QIOW_S -                     ; Issue QIO and wait
    CHAN = NW_CHAN,-            ; to network device
    FUNC = #IO$_NETCONTROL,-    ; Function is net control
    IOSB = IO_STATUS,-          ; I/O status block
    P1 = TEMPLATE_BUFFER,-      ; Address of buffer
    P2 = TEMPLATE_BUFFER_LEN,-  ; Length of buffer
    P3 = #PSI$K_X29_HOST_ECHO_PARAMS,-
    -           ; Subfunction specifies
    -           ; which template to manipulate
    P4 = #PSI$K_X29_SET,-       ; NV set operation
    P6 = NV_UNIT                ; NV unit number
  BSBW  IO_ERROR      ; Check for I/O error

Return Status
SS$_NORMAL Service completed successfully.
SS$_ACCVIO The buffer specified in p1 cannot be read.

PSI$K_X29_HOLD_TIMER
PSI$K_X29_HOLD_TIMER — SET Subfunction

Purpose
This parameter sets the Hold Timer to units of 1/10 of a second.

Parameter p2 is the size of the buffer that stores the timer value. Set p2 to 4 bytes.

Set the timer to 0 to transmit all output from NV to the X.29 terminal immediately.

For details of how the Hold Timer functions in relation to the NV device, refer to the VSI X.25 for
OpenVMS Programming Guide.

67



Chapter 4. X.29 System Services

Example
In this example the Hold Timer is set to 1/5 second.

NW_CHAN:
  .BLKW  1      ; Channel to NW
NV_UNIT:
  .BLKL  1      ; NV Unit number
IO_STATUS:
  .BLKW  4      ; I/O Status block
HOLD_TIMER:
  .LONG  2      ;Hold timer value
;
  $QIOW_S -                             ; Issue QIO and wait
  IOSB = IO_STATUS                      ; I/O Status block
  CHAN = NW_CHAN,-                      ;Control channel to NW
  FUNC = #IO$_NETCONTROL,-              ;Function is NETCONTROL
  P1   = HOLD_TIMER                     ;New hold timer
  P2   = #4                             ;Longword
  P3   = #PSI$K_X29_HOLD_TIMER,-        ;Subfunction
  P4   = #PSI$K_X29_SET,-               ;NV set data
  P6   = NV_UNIT                        ;NV Unit number
;
   BSBW  IO_ERROR        ;Check system service and IOSB

Return Status
SS$_NORMAL Service completed successfully: Hold Timer is set.
SS$_ACCVIO The timer value specified in the p1 buffer cannot be read.

PSI$K_X29_INT_ACTION
PSI$K_X29_INT_ACTION — SET Subfunction

Purpose
This parameter sets the actions to be taken when an interrupt issued at the X.29 terminal is received as
an X.25 Interrupt.

Parameter p2 is the size of the NV Action Descriptor Block. Set p2 either to PSI
$K_X29_ACTION_LENGTH (= 20 bytes), or to a value between 4 and 20 bytes.

Set one or more of the following bits in the 4–byte Action flag (byte 0 to 3):

PSI$V_X29_ACTION_RESET To reset the virtual circuit.
PSI$V_X29_ACTION_PURGE To purge all input in the NV device.
PSI$V_X29_ACTION_CLEAR To clear the call.

Only the first three bits of byte 0 are used.

If you require other actions to be taken, set the counted string (PSI$T_X29_ ACTION_STRING) in the
NV Action Descriptor Block.

68



Chapter 4. X.29 System Services

For details of the NV Action Descriptor Block, refer to the VSI X.25 for OpenVMS Programming Guide.

Example
In the following example, the Typeahead buffer is purged automatically and the NV input is purged by
setting PSI$V_X29_ACTION_PURGE in the Action flag Ctrl/Y and in the counted string.

NW_CHAN:
  .BLKW  1      ; Channel to NW
NV_UNIT:
  .BLKL  1      ; NV Unit number
IO_STATUS:
  .BLKW  4      ; I/O Status block
DESC_BLOCK:     ;Descriptor block
  .LONG  PSI$M_X29_ACTION_PURGE  ;Purge NV
;
STRING:
  .BYTE  STRING_LENGTH  ;Count
  .BYTE  25             ;^Y
  STRING_LENGTH = .-STRING
  DESC_LENGTH   = .-DESC_BLOCK
;
  $QIOW_S -                             ; Issue QIO and wait
  IOSB = IO_STATUS                      ; I/O Status block
  CHAN = NW_CHAN,-                      ;Control channel to NW
  FUNC = #IO$_NETCONTROL,-              ;Function is NETCONTROL
  P1   = DESC_BLOCK,-                   ;Address of descriptor block
  P2   = #DESC_LENGTH,-                 ;Length of descriptor block
  P3   = #PSI$K_X29_INT_ACTION,-        ;Subfunction
  P4   = #PSI$K_X29_SET,-               ;NV set data
  P6   = NV_UNIT                        ;NV Unit number
;
   BSBW IO_ERROR     ;Check system service and IOSB

Return Status
SS$_NORMAL Service completed successfully: interrupt actions are set.
SS$_ACCVIO The NV Action Descriptor Block specified in p1 cannot be read.

PSI$K_X29_LOCAL_ECHO_PARAMS
PSI$K_X29_LOCAL_ECHO_PARAMS — SET Subfunction

Purpose
This subfunction sets the local–echo PAD parameter template.

The local–echo PAD parameter template defines characteristics of the PAD in local–echo mode.

Parameter p2 is the size of the PAD parameter buffer. Calculate p2 as follows: (number of PAD
parameters to be set) * PSI$K_X29_PARAM_LENGTH

Refer to the VSI X.25 for OpenVMS Utilities Guide for a description of how to use PAD parameter
templates.

69



Chapter 4. X.29 System Services

Example
.MACRO  PAD_PARAM_ITEM  CODE, VALUE=0, ATTR=0
  .WORD  CODE           ; PSI$W_X29_PARAM_REF
  .WORD  ATTR           ; PSI$W_X29_PARAM_FLAGS
  .BYTE  VALUE          ; PSI$B_X29_PARAM_VALUE
  .BYTE  0, 0, 0        ; Must be zero
.ENDM
NW_CHAN:
  .BLKW  1      ; Channel to NW
NV_UNIT:
  .BLKL  1      ; NV unit number
IO_STATUS:      ; I/O status block
  .BLKW  4
TEMPLATE_BUFFER:
  PAD_PARAM_ITEM  -  ; Calculate echo
    CODE=PSI$K_X29_PAR_ECHO, ATTR=PSI$M_X29_CALCULATE
  PAD_PARAM_ITEM  -  ; Turn Editing on
    CODE=PSI$K_X29_PAR_EDIT, VALUE=1
  PAD_PARAM_ITEM  -  ; Turn off timeouts
    CODE=PSI$K_X29_PAR_TIMEOUT, VALUE=0
  PAD_PARAM_ITEM  -  ; Set up newline
    CODE=PSI$K_X29_PAR_NEW_LINE, VALUE=4
TEMPLATE_BUFFER_LEN = .-TEMPLATE_BUFFER   ; template
;
; Set the PAD parameter template
;-
  $QIOW_S -                             ; Issue QIO and wait
    CHAN = NW_CHAN,-                    ; to network device
    FUNC = #IO$_NETCONTROL,-            ; Function is network control
    IOSB = IO_STATUS,-                  ; I/O status block
    P1 = TEMPLATE_BUFFER,-              ; Address of buffer
    P2 = TEMPLATE_BUFFER_LEN,-          ; Length of buffer
    P3 = #PSI$K_X29_LOCAL_ECHO_PARAMS,-
    -        ; Subfunction specifies
    -        ; which template to manipulate
    P4 = #PSI$K_X29_SET,-               ; NV set operation
    P6 = NV_UNIT                        ; NV unit number
  BSBW IO_ERROR                  ; Check for I/O error

Return Status
SS$_NORMAL Service completed successfully.
SS$_ACCVIO The buffer specified in p1 cannot be read.

PSI$K_X29_PAD_PARAMS
PSI$K_X29_PAD_PARAMS — SET Subfunction

Purpose
This parameter assigns values to specified PAD parameters.

Parameter p2 is the size of the PAD Parameter List. Calculate p2 as follows:

70



Chapter 4. X.29 System Services

(number of PAD parameters to be set) * PSI$K_X29_PARAM_LENGTH

The PAD Parameter List consists of PAD parameter items. To set standard PAD parameters, you should
specify the appropriate Parameter Code in the type field, followed by the required value.

Refer to Appendix E for details of the PAD parameters, and refer to the VSI X.25 for OpenVMS
Programming Guide for details of the PAD Parameter List and how PAD parameter settings may affect
NV operation.

To set nonstandard PAD parameters, specify a sequence of items in the PAD Parameter List, as follows:

Item 1: Parameter code = 0
Parameter value = 0

Item 2: Nonstandard PAD parameter code
Parameter value

Item 3: Nonstandard PAD parameter code
Parameter value

. . . and so on.

For details of the nonstandard PAD facilities that are supported, refer to the technical documentation
supplied by the PSDN.

Example
The following code turns echo off by setting ECHO to zero.

.MACRO  PAD_PARAM_ITEM  CODE, VALUE=0, ATTR=0
  .WORD  CODE           ; PSI$W_X29_PARAM_REF
  .WORD  ATTR           ; PSI$W_X29_PARAM_FLAGS
  .BYTE  VALUE          ; PSI$B_X29_PARAM_VALUE
  .BYTE  0, 0, 0        ; Must be zero
.ENDM
NW_CHAN:
  .BLKW  1      ; Channel to NW
NV_UNIT:
  .BLKL  1      ; NV Unit number
IO_STATUS:
  .BLKW  4      ;I/O status block
PAD_PARAM_BLOCK:
  PAD_PARAM_ITEM  -  ; Turn Echo off
    CODE=PSI$K_X29_PAR_ECHO, VALUE=0
PAD_PARAM_LEN = .-PAD_PARAM_BLOCK
;+
; Make sure that the PAD echo parameter is turned off
;-
  $QIOW_S -                     ; QIO and wait
    CHAN = NW_CHAN,-            ; NW channel
    IOSB = IO_STATUS,-          ; I/O status block
    FUNC = #IO$_NETCONTROL,-    ; network control operation
    P1 = PAD_PARAM_BLOCK,-      ; PAD Parameter List
    P2 = #PAD_PARAM_LEN,-       ; length of block
    P3 = #PSI$K_X29_PAD_PARAMS,-; change PAD parameter
    P4 = #PSI$K_X29_SET,-       ; NV set operation
    P6 = NV_UNIT                ; NV unit number
  BSBW  IO_ERROR                ; Check system service and IOSB

71



Chapter 4. X.29 System Services

Return Status
SS$_NORMAL Service completed successfully: PAD parameters are set.
SS$_ACCVIO The PAD Parameter List specified in p1 cannot be written.
SS$_BADPARAM Unable to set PAD parameters, incorrect specification. Refer to the

description of secondary status values below for details.
SS$_BUFFEROVF Buffer specified in p1 is too small to hold the PAD parameters that

are set and are read back into that buffer.
SS$_CTRLERR A PAD error message is received in response to a message sent by

NV. Refer to the description of secondary status below for details.
SS$_TIMEOUT No response received from PAD.

Secondary Return Status
Secondary status values are found in the third word of the IOSB.

If the first word of the IOSB contains SS$_BADPARAM, the third word will contain the PAD
parameter number (IOSB word 4 contains the original value).

If the first word of the IOSB contains SS$_CTRLERR, contents of the third word will be:

Byte 1: X.29 error type

Byte 2: Invalid code

PSI$K_X29_PAD_RESELECTION
PSI$K_X29_PAD_RESELECTION — SET Subfunction

Purpose
This subfunction sends a PAD reselection message to the remote PAD.

The NCB item–list contains the parameters to put in the reselection message, remote DTE address, user
data field and facilities.

Parameter p1 is the address of the start of the NCB item–list. Parameter p2 is the length of the NCB
item–list.

NCB Contents
Only mandatory, optional, and ignore items are listed in the following table. Other items will generate an
error if you use them.

PSI$C_NCB Item Code Meaning

Mandatory items

RESELECT_DTE Reselection DTE address
Optional items

LOCFAC Local PSDN facilities

72



Chapter 4. X.29 System Services

PSI$C_NCB Item Code Meaning

USERDATA User data field (See Note)
Ignored items

NULL Null item identifier

Note

The user data field can be up to 16 bytes in length for normal calls and up to 128 bytes in length for fast
select calls.

Example
The following example sends a PAD reselection message to the remote PAD, with DTE address
234273400321, with optional user data and local PSDN facilities.

.MACRO  NCB_ITEM_HEADER   CODE, LENGTH=0
  .WORD  4+(LENGTH)
  .WORD  CODE
.ENDM
NW_CHAN:
  .BLKW  1              ; Channel to NW
IO_STATUS:              ; I/O status block
  .BLKQ  1
RESELECT_ITEM_LIST:
  NCB_ITEM_HEADER  psi$c_ncb_reselect_dte, 4+13
  .ascic "234273400321"
  NCB_ITEM_HEADER  psi$c_ncb_user_data, 4+7
  .ascic "BARRY"
  NCB_ITEM_HEADER  psi$c_ncb_locfac, 4+7
  .byte 6                 ; number of facility bytes
  .byte ^x43, ^x07, ^x07  ; Window size of 7
  .byte ^x42, ^x0a, ^x0a  ; Packet size of 1024
RESELECT_ITEM_LIST_LEN = .-RESELECT_ITEM_LIST
;
; Set the PAD parameter template
;-
  $QIOW_S -                             ; Issue QIO and wait
    CHAN = NW_CHAN,-                    ; to network device
    FUNC = #IO$_NETCONTROL,-            ; Function is net control
    IOSB = IO_STATUS,-                  ; I/O status block
    P1 = RESELECT_ITEM_LIST,-           ; Address of buffer
    P2 = RESELECT_ITEM_LIST_LEN,-       ; Length of buffer
    P3 = #PSI$K_X29_PAD_RESELECTION,-
    -      ; Subfunction specifies
    -      ; send pad reselection message
    P4 = #PSI$K_X29_SET,-               ; NV set operation
    P6 = NV_UNIT                        ; NV unit number
  BSBW  IO_ERROR       ; Check for I/O error

Return Status
SS$_NORMAL The PAD reselection message has been sent to the PAD.
SS$_ACCVIO The buffer specified in p1 cannot be read.

73



Chapter 4. X.29 System Services

SS$_IVBUFLEN The NCB is badly formatted; check the item lengths.
SS$_BADPARAM An item code is invalid or the contents of an item are invalid.

PSI$K_X29_TEMP_NOHANG
PSI$K_X29_TEMP_NOHANG — SET Subfunction

Purpose
This parameter sets the X.29 terminal to enable TEMP_NOHANG.

Normally, when the last channel is deassigned from an NV unit, the call is cleared and all resources used
by the unit are returned to the system. This subfunction temporarily disables terminal hangup and allows
the NV unit to be passed to another process. Refer to the VIS X.25 for OpenVMS Programming Guide for
further details.

When the channel has been deassigned and the login sequence has started, setting the TEMP_NOHANG
flag to 0 does not affect operations.

Set p3 either to 1 (enable TEMP_NOHANG) or to 0 (disable TEMP_NOHANG). Set p2 (buffer length)
to 4 bytes.

Example
The following code enables TEMP_NOHANG.

NW_CHAN:
  .BLKW  1      ; Channel to NW
TEMP_NOHANG_ON:
  .LONG  1      ; Value to set in temp no hang
NV_UNIT:
  .BLKL  1      ; NV unit number
IO_STATUS:
  .BLKW  4      ; I/O status block
;+
; Set the temp_nohang bit
;-
  $QIOW_S -                     ; QIO and wait
    IOSB = IO_STATUS,-          ; I/O status block
    CHAN = NW_CHAN,-            ; channel to NW
    FUNC = #IO$_NETCONTROL,-    ; function is net control
    P1 = TEMP_NOHANG_ON,-       ; value to set
    P2 = #4,-                   ; longword
    P3 = #PSI$K_X29_TEMP_NOHANG,-; change NV temp_nohang
    P4 = #PSI$K_X29_SET,-       ; NV set operation
    P6 = NV_UNIT                ; NV unit number
  BSBW  IO_ERROR                ; Check system service and IOSB

Return Status
SS$_NORMAL Service completed successfully: TEMP_NOHANG is set.
SS$_ACCVIO The value in the p1 buffer cannot be written.

74



Chapter 5. Status Codes Returned
at System Service Completion
When a system service completes, a status code is returned. The system services used for X.25 for
OpenVMS programming place the return status code in Register 0 (R0). Return status codes usually
show if the service completed successfully, although sometimes they simply provide information for your
program. Moreover, a success return status code (severity level = 1) does not necessarily mean that the
program achieved the desired result, but only that the service has completed all its functions, and has
returned control to the calling program. For example, the return status code SS$_BUFFEROVF, returned
when a character string returned by a service is longer than the buffer provided to receive it, is a success
code.

Note

All of the QIO system service calls return a success status code of SS$_NORMAL. This indicates only
that the request was successfully queued.

Warning status codes (and some error status codes) show that the service may have completed part, but
not all, of the requested functions.

Generally, return status codes have the same meaning wherever they are returned. The return status
codes for each system service are listed in the following chapters, together with any special meanings of
the status codes for that system service:

● Chapter 2 for system services common to X.25 and X.29 programming.

● Chapter 3 for system services specific to X.25 programming.

● Chapter 4 for system services specific to X.29 programming.

When your program calls a system service, read the descriptions of the service’s return status codes to
determine whether you want the program to check for particular return conditions.

When a system service completes, the system services used for X.25 for OpenVMS programming place
the return status code in the first word of the I/O Status Block (IOSB), in addition to placing the return
status code in Register 0 (R0). Further I/O completion status information is placed in the second, third,
and fourth words of the IOSB, as shown in Table 5.1.

Table 5.1. Completion Status Information in the IOSB

IOSB Contents Meaning

Word 1 Return status The completion status code returned by the system
service call.

Word 2 Byte count The number of bytes that have been processed.

For read operations: the number of bytes read.

For IO$_ACCESS operations: the number of bytes of the
NCB processed successfully before an error.

75



Chapter 5. Status Codes Returned at System Service Completion

IOSB Contents Meaning

Word 3 Secondary status For IO$_ACCESS and IO$_DEACCESS:

If IOSB word 1 contains SS$_ABORT or SS$_
IVDEVNAM, word 3 contains a secondary status.
In addition, on OpenVMS VAX systems, if IOSB
word 1 contains SS$_ NORMAL, word 3 contains a
secondary status. Otherwise, the contents are undefined.
Details of the secondary statuses for IO$_ACCESS
and IO$_DEACCESS are provided with the service
descriptions in $QIO(IO$_ACCESS) and $QIO(IO
$_DEACCESS).

    For IO$_ACPCONTROL:

If IOSB word 1 contains SS$_IVDEVNAM, word 3
contains a secondary status. Otherwise, the contents
are undefined. Details of the secondary status for IO
$_ ACPCONTROL are with the service description in
$QIO(IO$_ACPCONTROL).

    For IO$_NETCONTROL(PSI$K_X29_SET,PSI$K_
X29_PAD_PARAMS):

If IOSB word 1 contains SS$_BADPARAM or SS
$_CTRLERR, word 3 contains a secondary status.
Otherwise, the contents are undefined. Details of
the secondary status for IO$_NETCONTROL(PSI
$K_X29_SET,PSI$K_X29_PAD_PARAMS) are with
the service description in PSI$K_X29_PAD_PARAMS.

    For IO$_READVBLK:

If IOSB word 1 contains SS$_NORMAL, word 3
contains a secondary status. Otherwise, the contents
are undefined. Details of the secondary status for IO
$_READVBLK are with the service description in
$QIO(IO$_READVBLK).

Word 4 — Internal information, ignore this field.

Refer to the OpenVMS documentation for further details of the use of asynchronous system traps
(ASTs), I/O status blocks (IOSBs) and event flags.

The operating system does not automatically handle system service failure or warning conditions. You
must test for them, and handle them yourself. This contrasts with the operating system’s handling of
exception conditions that are detected by the hardware or software. The operating system handles these
exception conditions by default. However, you can override the default handling by declaring a condition
handler (refer to the OpenVMS documentation of system services).

5.1. Testing the Return Status Code
Each language provides a mechanism for testing the return status. Often, you need check only the
low–order bit, such as testing for TRUE (success or informational return) or FALSE (error or warning
return).

76



Chapter 5. Status Codes Returned at System Service Completion

However, you can check the entire value for a specific return condition. To permit this, each language
provides a way for your program to determine the values associated with specific, symbolically defined
codes. Always use these symbolic names when your code tests for specific conditions.

For information on how to test for these symbolically defined codes, see the User’s Guide for your
programming language.

The return status is stored as a binary value in a longword. Depending on your specific needs, you can
test just the low–order bit, the three low–order bits, or the entire value:

● The low–order bit indicates successful (1) or unsuccessful (0) completion of the service.

● The three low–order bits, taken together, represent the severity of the error. Severity code values are:

Value Severity Level

0 Warning
1 Success
2 Error
3 Informational
4 Severe (or fatal) error
5-7 (Reserved)

● The remaining bits (bits 3 to 31) classify the particular return condition and the operating system
component that issued the status code. Note that for system service return status values, the high–
order word (bits 16 through 31) contains zeros.

Each numeric status code has a symbolic name in the format:

SS$_code

where code is a mnemonic describing the return condition. For example, the most common successful
return is indicated by SS$_NORMAL, and a common error status code is SS$_ACCVIO (access
violation, indicating that the service could not read an input argument, or write an output argument).

The symbols associated with the different return status values are defined in the default system library.

5.2. Special Return Conditions
Two process execution modes affect the way control is returned to your program when an error occurs
during the execution of a system service. These modes are:

● Resource wait mode

● System service failure exception mode

If you choose to change the default setting for either of these modes, your program must handle the
special conditions that result.

5.2.1. Resource Wait Mode
Many system services require certain system resources for execution. These resources include system
dynamic memory and process quotas for I/O operations. Normally, when a system service is called and

77



Chapter 5. Status Codes Returned at System Service Completion

a required resource is not available, the program is placed in a wait state, until the resource becomes
available. The service then completes execution. This mode is called resource wait mode.

In a real–time environment, however, it may not be practical or desirable for a program to wait. You can
choose to disable resource wait mode in such cases and control will return immediately to your program
with an error status code. You can enable or disable resource wait mode with the Set Resource Wait
Mode ($SETRWM) system service.

How a program responds to the lack of a resource depends on the application, and the particular service
that is being called. In some instances, the program may want to continue execution and retry the service
call later. In other instances, it may be necessary only to note that the program is being required to wait.

5.2.2. System Service Failure Exception Mode
This mode determines whether control is returned to you in the normal manner following an error in a
system service operation, or whether an exception is generated. System service failure exception mode is
disabled by default: your program receives control following an error. You can enable and disable system
service failure exception mode with the Set System Service Failure Exception Mode ($SETSFM) service.

High–level language compilers generate calls to system services for many statements or instructions in
source programs (for example, reads and writes to files generate calls to VAX RMS, which uses the QIO
and QIOW services). If you enable system service failure exception mode, many different types of errors
(such as an I/O attempt to a nonexistent device or non–numeric input to a mathematics routine) will
generate the message:

%SYSTEM-F-SSFAIL, system service failure exception,...

Because of this, you are recommended not to enable system service failure exception mode in high–
level language programs, except perhaps when debugging. If you enable system service failure exception
mode and do not declare your own condition handler, many error messages displayed at run time will be
meaningless.

5.3. Obtaining Values for Other Symbolic
Codes
In addition to the symbolic codes for specific return conditions, many individual services also have
symbolic codes for the offsets, identifiers, or flags associated with these services. For example, the
Create Process ($CREPRC) service, which is used to create a subprocess or a detached process, has
symbolic codes associated with the various privileges and quotas you can grant to the created process.

If your language has a method of obtaining values for these symbols, that method will be explained in
the User’s Guide for your programming language. If your language does not have such a method:

● Write a short MACRO program containing the desired macros.

● Assemble the program and generate a listing. Use the listing to find the desired symbols and their
hexadecimal values.

● Define each symbol with its value within your source program.

78



Appendix A. Summary of X.25
System Service Calls
A.1. System Services for Setting Up and
Clearing Communications
$ASSIGN devnam,chan,[acmode],[mbxnam]

Assign a channel.

$CANCEL chan

Clear a virtual call on a channel.

$CREMBX [prmflg],chan,[maxmsg], [bufquo],[promsk],[acmode],[lognam]

Create mailbox and assign a channel.

$QIO [efn],chan,IO$_ACCESS,[iosb], [astadr],[astprm], [p1],p2,[p3],[p4],[p5],p6

Set up a virtual circuit.

$QIO [efn],chan,IO$_DEACCESS,[iosb], [astadr],[astprm], [p1],[p2],[p3],[p4],[p5],p6

Clear a virtual circuit.

$DASSGN chan

Deassign a channel.

A.2. System Services for Handling Incoming
Calls
$QIO [efn],chan,IO$_ACCESS!IO$M_ACCEPT, [iosb],[astadr],[astprm],[p1],p2, - [p3],[p4],[p5],p6

Accept a request to set up a virtual circuit.

$QIO [efn],chan,IO$_ACCESS!IO$M_ABORT, [iosb],[astadr],[astprm,[p1],p2, - [p3],[p4],[p5],[p6]

Reject a request to set up a virtual circuit.

$QIO [efn],chan,IO$_ACCESS!IO$M_REDIRECT, [iosb],[astadr],[astprm],[p1],p2, - [p3],[p4],
[p5],[p6]

Redirect a call request.

$QIO [efn],chan,IO$_ACPCONTROL, [iosb],[astadr],[astprm], p1,p2,[p3],[p4],[p5],[p6]

Declare a process as a network process.

79



Appendix A. Summary of X.25 System Service Calls

A.3. System Services for Handling Control and
Data Messages
$QIO [efn],chan,IO$_READVBLK,[iosb], [astadr][astprm], p1,p2,[p3],[p4],[p5],[p6]

Receive data.

$QIO [efn],chan,IO$_WRITEVBLK, [iosb],[astadr][astprm], p1,p2,[p3],[p4],[p5],[p6]

Transmit data.

$QIO [efn],chan,IO$_NETCONTROL, [iosb],[astadr],[astprm],[p1],[p2],[p3], -

PSI$K_INTACK,[p5],[p6]

Confirm receipt of an interrupt.

$QIO [efn],chan,IO$_NETCONTROL, [iosb],[astadr],[astprm],[p1],[p2],[p3], -

PSI$K_INTERRUPT,[p5],[p6]

Transmit an interrupt.

$QIO [efn],chan,IO$_NETCONTROL, [iosb],[astadr],[astprm],[p1],[p2],[p3], -

PSI$K_RESET,[p5],[p6]

Reset a virtual circuit, or confirm the receipt of a reset.

$QIO [efn],chan,IO$_NETCONTROL, [iosb],[astadr],[astprm],[p1],[p2],[p3],-

PSI$K_RESTART,[p5],[p6]

Confirm receipt of a restart.

$QIO [efn],chan,IO$_NETCONTROL, [iosb],[astadr],[astprm],p1,p2,p3, -

PSI$K_X29_READ,[p5],p6

Read X.29 terminal characteristics.

80



Appendix B. Summary of X.29
System Service Calls
B.1. System Services for Setting Up and
Clearing Communication
$ASSIGN devnam,chan,[acmode],[mbxnam]

Assign a channel.

$GETDVI [efn],[chan],[devnam],itmlst, [iosb],[astadr],[astprm],nullarg

Get NV unit number.

$CREMBX [prmflg],chan,[maxmsg], [bufquo],[promsk],[acmode],[lognam]

Create mailbox and assign a channel.

$QIO [efn],chan,IO$_ACCESS,[iosb], [astadr],[astprm],[p1],p2,[p3,p4,p5], p6

Set up a virtual circuit.

$QIO [efn],chan,IO$_DEACCESS,[iosb], [astadr],[astprm],[p1],[p2],[p3],[p4],[p5], p6

Clear a virtual circuit.

$DASSGN chan

Deassign a channel.

In the above $QIO system service calls, the arguments are as follows:

p2 is the start address of the quadword NCB descriptor.
p6 (where mandatory) is the unit number of the NV device.

B.2. System Services for Handling Incoming
Calls
$QIO [efn],chan,IO$_ACPCONTROL, [iosb],[astadr],[astprm],p1,p2

Declare a process as a network process

$QIO [efn],chan,IO$_ACCESS!IO$M_ACCEPT, [iosb], - [astadr],[astprm],[p1],p2,[p3],[p4],[p5],
p6

Accept a request to set up a virtual circuit.

81



Appendix B. Summary of X.29 System Service Calls

$QIO [efn],chan,IO$_ACCESS!IO$M_ABORT, [iosb], - [astadr],[astprm],[p1],p2,[p3],[p4],[p5],
[p6]

Reject a request to set up a virtual circuit.

$QIO [efn],chan,IO$_ACCESS!IO$M_REDIRECT, [iosb], - [astadr],[astprm],[p1],p2,[p3],[p4],
[p5], [p6]

Redirect a call request.

In IO$_ACPCONTROL:

p1 is the address of the quadword descriptor of a block containing:

.BYTE NFB$C_DECLNAME

.LONG 0

p2 is the address of the quadword descriptor of a Network Process Declaration Block.

In the other $QIO system service calls, the arguments are as follows:

p2 is the start address of the quadword NCB descriptor.
p6 (where mandatory) is the unit number of the NV device.

B.3. System Services for Reading and
Setting PAD Parameters and NV Terminal
Characteristics
$QIO [efn],chan,IO$_NETCONTROL, - [iosb],[astadr],[astprm],p1,p2,p3, PSI$K_X29_READ,
[p5],p6

Read X.29 terminal characteristics.

$QIO [efn],chan,IO$_NETCONTROL, [iosb], - [astadr],[astprm],p1,p2,p3,PSI$K_X29_SET,
[p5],p6

Set X.29 terminal characteristics.

For both these system services, the arguments are as follows:

p1 is the buffer address.
p2 is the buffer size (bytes).
p3 is one of the following Network Control Subfunctions:

PSI$K_X29_BREAK_ACTION
PSI$K_X29_HANGUP_PARAMS
PSI$K_X29_HOLD_TIMER
PSI$K_X29_HOST_ECHO_PARAMS
PSI$K_X29_INT_ACTION
PSI$K_X29_LOCAL_ECHO_PARAMS
PSI$K_X29_PAD_PARAMS
PSI$K_X29_PAD_RESELECTION (PSI$K_X29_SET only)

82



Appendix B. Summary of X.29 System Service Calls

PSI$K_X29_TEMP_NOHANG
p6 is the unit number of the NV device.

B.4. Terminal Driver Functions
The functions supported by the terminal driver are available at the QIO interface. For details of the
terminal driver QIOs, refer to the VMS terminal driver documentation.

83



Appendix B. Summary of X.29 System Service Calls

84



Appendix C. Network Connect
Block (NCB)
C.1. Description of the NCB
For each call request, X.25 for OpenVMS constructs a Network Connect Block (NCB). The NCB holds
information about how the call is to be routed across the PSDN, charging and diagnostic information,
and requests for transmission facilities. It can also contain some user data. Your program uses the NCB
to access and amend this information when it sets up or clears a virtual circuit, or when it accepts,
redirects, or rejects a request to set up a virtual circuit.

This appendix describes the contents and format of the NCB. The format of the NCB is described
in Section C.2. The items that make up the NCB are listed by function in Section C.4 and defined in
alphabetical order in Section C.5.

C.2. NCB Format
A Network Connect Block (NCB) consists of items of information. The items are of variable length, each
item containing the following fields:

Word 1

Length of data in this item (including words 1 and 2).

Word 2

Type code, of the form PSI$C_NCB_code.

Subsequent bytes

Data (variable length).

Each type of data has a specific format: single–byte value, single word value, counted string, or
longword value.

C.3. Data Type Format Definitions
The data type formats used in NCBs are:

single byte An 8–bit field
single word A 16–bit field
longword A 32–bit field
counted string A variable length field where the first octet contains the number of bytes in the

remainder of the field

C.4. NCB Item Functions
This section describes the content and usage of each NCB item in alphabetical order. Table C.1
summarizes the items by type.

85



Appendix C. Network Connect Block (NCB)

For an outgoing call request, the NCB must include some routing information. For an SVC, specify the
remote DTE address. For a PVC, specify the PVC identifier. You may also need to specify the network
identifier.

For an incoming call request, X.25 for OpenVMS constructs an NCB with an appropriate Incoming Call
Identifier.

Other items in the NCB are either optional, ignored, or not used, as documented in the system service
descriptions.

If you specify an item that is not used with a particular system service, X.25 for OpenVMS generates
an error. In these cases, you may change the item code to null, so that you can re–use the NCB without
having to delete the length and data fields for that item.

Your PSDN must subscribe to a facility for your program to be able to specify it.

Table C.1. NCB Item Codes

Code Data (usage)

Routing information

CUG (Bilateral) Closed User Group
DTECLASS Name of the DTE Class from which a member DTE is used to make the call
FILTER Filter entity
FLT_PRI Destination priority (incoming)
FLT_REDPRI Redirection priority (incoming)
GATEWAY Gateway identifier (reserved usage)
ICI Incoming Call Identifier
LOCDTE (OpenVMS
VAX)

Local DTE address

LOCSUBADR
(OpenVMS IA-64/
Alpha)

Local subaddress

REMDTE Remote DTE address—this must be included in the NCB for SVCs if a remote
DTE address is not defined in the template used for the call

REMSUBADR Remote subaddress
TEMPLATE Name of template created by network management, with specified parameters
Routing information: PVC only

PASSWORD User password
PVCNAM PVC identifier—this must be included in the NCB for PVCs (continued on next

page)
Routing information: PSDN facilities

ADDR_MOD_RSN Reason for modifying called line address (incoming)
CALLED_EXTENSIONCalled address extension
CALLING_EXTENSIONCalling address extension
CALL_REDIR_ORIG Original DTE destination of redirected call (incoming)
CALL_REDIR_RSN Call redirection reason (incoming)

86



Appendix C. Network Connect Block (NCB)

Code Data (usage)

LOCFAC Local PSDN facilities (outgoing)
LOCFACR Local PSDN facilities (incoming)
NET_USER_ID Network user identifier
RPOA Remote Port Of Access
User data

NULL Null item identifier
USERDATA User data field
User data: SVC only

FSEL Fast select without restriction (outgoing)
FSEL_RES Fast select with restricted response (outgoing)
RESPDATA Fast select response data (outgoing)
Diagnostics

CAUSE Code for PSDN clearing a call
DIAGCODE Diagnostic code
REASON Code for X.25 for OpenVMS clearing a call
Charging information

REVCHG Reverse charging request (outgoing)
Charging information: PSDN facilities

CHARGE_MON Monetary units for charging (incoming)
CHARGE_SEG Segment count for charging (incoming)
CHARGE_TIME Elapse time for charging (incoming)
CHARGING_INFO Charging information request (outgoing)
Transmission facilities

PKTSIZE Packet size (outgoing)
THRUCLS Throughput class (maximum data rate)
RCV_QUOTA Total size of receive buffers (in bytes)
WINSIZE Window size (outgoing)
Transmission parameters: PSDN facilities

CUM_TRST_DLY Cumulative transit delay (outgoing)
CUM_TRST_DLY_R Cumulative transit delay (incoming)
ETE_TRST_DLY End–to–end transit delay (outgoing)
EXPEDITE Negotiate use of expedited data (interrupts)
MAX_TRST_DLY Maximum acceptable transit delay
MIN_THRUCLS Minimum throughput class (for data rate)
TRANSIT_DELAY Requested maximum transit delay

87



Appendix C. Network Connect Block (NCB)

C.5. NCB Item Descriptions
PSI$C_NCB_ADDR_MOD_RSN: Reason for modifying called line address

The PSDN specified a code in this item to indicate why it has modified the address that was called.
Your program can specify a PSDN–specific code in this item to indicate why it has accepted or
cleared an incoming call.

Data format: single–byte value in the range 0–255.

PSI$C_NCB_CALLED_EXTENSION: Called address extension

This item specifies an address extension for the destination (See the description of the $QIO(IO
$_ACCESS) system service for more information).

Data format: counted string (second byte in the string contains a nibble count).

PSI$C_NCB_CALLING_EXTENSION: Calling address extension

This item specifies the address extension of the DTE that originated an incoming call. (See the
description of the $QIO(IO$_ACCESS) system service for more information).

Data format: counted string (second byte in the string contains a nibble count).

PSI$C_NCB_CALL_REDIR_ORIG: Original DTE destination of redirected call

This item specifies the DTE from which a call was redirected.

Data format: counted string.

PSI$C_NCB_CALL_REDIR_RSN: Call redirection reason

This item specifies why the PSDN redirected the call.

Data format: single–byte value in the range 0–255.

PSI$C_NCB_CAUSE: Code for PSDN clearing a call

Your PSDN uses this item to specify a PSDN–specific code indicating why it cleared a call.

If the ISO8208 profile is being used, your program may specify a value in the item when it clears a
call. Values 1–127 are available if the interface is acting as a DCE.

Data format: single–byte value in the range 0–255.

PSI$C_NCB_CHARGE_MON: Monetary units for charging

This item specifies the charge for the call in monetary units. It may be supplied by the PSDN when
the call is cleared.

Data format: counted string, PSDN–specific format.

PSI$C_NCB_CHARGE_SEG: Segment count for charging

This item specifies the charge for the call in segment counts. It may be supplied by the PSDN when
the call is cleared.

88



Appendix C. Network Connect Block (NCB)

Data format: counted string, PSDN–specific format.

PSI$C_NCB_CHARGE_TIME: Elapse time for charging

This item specifies the charge for the call in elapsed time. It may be specified by the PSDN when the
call is cleared.

Data format: counted string, PSDN–specific format.

PSI$C_NCB_CHARGING_INFO: Charging information request

Your program can use this item to request charging information when it sends a call request.

Data format: no data field.

PSI$C_NCB_CUG: (Bilateral) Closed User Group

This item specifies a (Bilateral) Closed User Group as destination.

Data format: counted string.

PSI$C_NCB_CUM_TRST_DLY: Cumulative transit delay

This item specifies the cumulative transit delay in milliseconds in a call accept since the original call
request.

Data format: single–word value, in the range 0–65,535.

PSI$C_NCB_CUM_TRST_DLY_R: Cumulative transit delay

This item specifies the cumulative transit delay in milliseconds for an incoming call since the original
call request.

Data format: single–word value, in the range 0–65,535.

PSI$C_NCB_DIAGCODE: Diagnostic code

This item specifies a diagnostic code, originated either by your PSDN, or by a user application.

Data format: single–byte value in the range 0–255.

PSI$C_NCB_DTECLASS: DTE Class

This item specifies the DTE Class from which a DTE is selected to make the call. This item also
points to the Gateway system which will take the call.

Data format: counted string.

PSI$C_NCB_ETE_TRST_DLY: End–to–end transit delay

This item specifies the acceptable transit delay in milliseconds for an outgoing call from one DTE to
the next. This item is used with PSI$C_NCB_CUM_ TRST_DLY.

Data format: single–word value, in the range 0–65,535.

PSI$C_NCB_EXPEDITE: Negotiate use of expedited data (interrupts)

This item specifies how X.25 for OpenVMS is to handle interrupts over a virtual circuit.

89



Appendix C. Network Connect Block (NCB)

0 = Interrupts not permitted.

1 = Interrupts permitted.

Data format: single–byte value, 0 or 1.

PSI$C_NCB_FILTER: Filter entity

Use this item to specify another filter when your program redirects an incoming call.

Data format: counted string.

PSI$C_NCB_FLT_PRI: Destination priority

This item specifies the priority of the destination that has received an incoming call.

Data format: single–word value in the range 0–65535.

PSI$C_NCB_FLT_REDPRI: Redirection priority

This item restricts the destinations that are to be searched when an incoming call is redirected. Only
destinations with a priority lower than the specified priority are searched.

To ensure that your process is not searched again, move the priority value from PSI
$C_NCB_FLT_PRI to PSI$C_NCB_FLT_REDPRI.

Data format: single–word value in the range 0–65535.

PSI$C_NCB_FSEL: Fast select without restriction

This item specifies the Fast Select facility, which allows a DTE to include a user data field in the call
request. The receiving DTE can accept or reject the call request, and send user data with its response.

The PSDN must subscribe to this facility.

Data format: no data field.

PSI$C_NCB_FSEL_RES: Fast select with restricted response

This item specifies the Fast Select facility, which allows a DTE to include a user data field in the call
request. The restriction prevents the receiving DTE from accepting the request to set up a virtual
circuit, but allows user data to be sent with the rejection.

The PSDN must subscribe to this facility.

Data format: no data field.

PSI$C_NCB_GATEWAY: Gateway identifier

This item is reserved for future use.

If you use this item, X.25 for OpenVMS returns an error in the IOSB: the first word contains SS
$_IVDEVNAM; the third word contains PSI$C_ERR_ INVITEM.

PSI$C_NCB_ICI: Incoming call identifier

This item identifies the incoming call. Do not modify or specify this item.

90



Appendix C. Network Connect Block (NCB)

Data format: longword.

PSI$C_NCB_LOCDTE: Local DTE address (OpenVMS IA-64/Alpha)

This item specifies the address of the local DTE in incoming calls.

Data format: counted string.

PSI$C_NCB_LOCFAC: Local PSDN facilities (outgoing)

Your program can specify coding for local PSDN facilities in this item when making an outgoing
call request.

X.25 for OpenVMS copies the contents of this item into the facilities field of the call request packet,
where they may appear in a different order from that specified in this item.

Data format: counted string. If required by the PSDN, you should include the local facilities marker.

PSI$C_NCB_LOCFACR: Local PSDN facilities (incoming)

Your program can specify coding for local PSDN facilities in this item when accepting or rejecting
an incoming call request.

X.25 for OpenVMS copies the contents of this item into the facilities field of the call request packet,
where they may appear in a different order to that specified in this item.

Data format: counted string. If required by the PSDN, you should include the local facilities marker.

PSI$C_NCB_LOCSUBADR: Local subaddress (OpenVMS VAX)

X.25 for OpenVMS supplies this item for incoming calls.

Data format: counted string.

PSI$C_NCB_MAX_TRST_DLY: Maximum acceptable transit delay

This item specifies the maximum acceptable transit delay in milliseconds.

Data format: single–word value, in the range 0–65535.

PSI$C_NCB_MIN_THRUCLS: Minimum throughput class

This item specifies the minimum data rate for a virtual circuit.

Data format: single–byte value, in the range 0–15.

PSI$C_NCB_NET_USER_ID: Network user identifier

This item identifies a network user.

Data format: counted string, PSDN–specific format.

PSI$C_NCB_NULL: Null item identifier

Any item containing this code is ignored.

Data format: any format accepted.

91



Appendix C. Network Connect Block (NCB)

PSI$C_NCB_PKTSIZE: Packet size

This item specifies the packet size for an outgoing call, where the packet size requested is different
from the default for the PSDN. The packet size requested must be valid for the PSDN.

Data format: single–word value, in the range 16–4096. The value must be a power of 2.

PSI$C_NCB_PVCNAM: PVC identifier

This item specifies a Permanent Virtual Circuit.

Data format: counted string.

PSI$C_NCB_RCV_QUOTA: Total size of receive buffers

This item specifies the total size of the buffers (in bytes) that X.25 for OpenVMS uses to hold
received data that has not yet been read by your application.

Minimum value = (packet-size + 276)

Maximum value = (packet-size + 276) * window-size

These buffer sizes are deducted from the BYTLM quota for your process.

Data format: longword value.

PSI$C_NCB_REASON: Code for X.25 for OpenVMS clearing a call

X.25 for OpenVMS uses this item to specify a code indicating why it cleared a call. Table C.2 lists
the possible symbolic values.

Data format: single–byte value in the range 0–255.

Table C.2. PSI$C_NCB_REASON Codes

Type Code Content

PSI$C_L3_NETWRK PSDN initiated
PSI$C_L3_NETERR PSDN protocol error
PSI$C_L3_LNKDWN Communications link failed
PSI$C_L3_LNKUP Communications link operational
PSI$C_L3_LNKRRT Communications link restarted
PSI$C_L3_GATDISC Connection to Gateway (Multihost node) disconnected
PSI$C_L3_NETDISC Connection to Gateway (Multihost node) lost
PSI$C_L3_LOCMGT Network management function
PSI$C_L3_CALCOL Call collision
PSI$C_L3_NETTIM Timeout on network

PSI$C_NCB_REMDTE: Remote DTE address

This item specifies the address of the remote DTE to which the call is to be made.

Data format: counted string.

92



Appendix C. Network Connect Block (NCB)

PSI$C_NCB_REMSUBADR: Remote subaddress

This item specifies the subaddress of the remote DTE to which the call is to be made.

Data format: counted string. The length of this item depends on the PSDN.

PSI$_NCB_RESPDATA: Fast select response data

Your program can add this item when it accepts or rejects an incoming call that specifies the Fast
Select facility.

The PSDN must subscribe to this facility.

Data format: counted string.

PSI$C_NCB_REVCHG: Reverse charging request

This item specifies reverse charging on an outgoing call request.

Data format: no data field.

PSI$C_NCB_RPOA: Remote Port Of Access

Your program can specify a PSDN–specific code in this item to specify how a call is to be routed
across international networks.

Data format: counted string of a multiple of four ASCII characters, each representing a value from 0
to 9.

PSI$C_NCB_TEMPLATE: Template

Specifies the template used for making the outgoing call.

Data format: counted string.

PSI$C_NCB_THRUCLS: Throughput class

This item specifies the maximum data rate for a virtual circuit.

Data format: single–byte value, in the range 0–255.

PSI$C_NCB_TRANSIT_DELAY: Requested maximum transit delay

This item specifies the transit delay, in milliseconds, of an outgoing call.

Data format: single–word value, in the range 0–65,535.

PSI$C_NCB_USERDATA: User data field

For an outgoing call request, this item specifies data to be passed to the remote DTE. However,
some character positions may have significance for your PSDN. Refer to the technical guide for your
PSDN for details.

For an incoming call request, this item specifies data originated by the remote DTE. This item is
ignored if it appears in the NCB for accepting or rejecting an incoming call.

For a fast select call (incoming or outgoing), this item specifies user data to be included in the
clear request packet when clearing the call.

93



Appendix C. Network Connect Block (NCB)

Data format: counted string.

PSI$C_NCB_WINSIZE: Window size

This item specifies the window size for an outgoing call, where the packet size requested is different
from the default for the PSDN. The window size requested must be valid for the PSDN.

Data format: single–word value, in the range 1–127.

C.6. Example NCB
The following example illustrates an NCB that you could use when issuing a fast select request to set
up a virtual circuit. The example identifies a remote DTE (234219876543), a network (PSS), and
includes a remote DTE subaddress (26). As the NCB specifies fast select, there is also a user data field
(containing the string DATADATADATA).

OPEN_INFO_START:
REMOTE_DTE:
        .WORD        REMOTE_DTE_LENGTH
        .WORD        PSI$C_NCB_REMDTE
        .ASCIC       /234219876543/
REMOTE_DTE_LENGTH =  .-REMOTE_DTE
DTECLASS:
        .WORD        DTECLASS_LENGTH
        .WORD        PSI$C_NCB_DTECLASS
        .ASCIC       /PSS/
DTECLASS_LENGTH =    .-DTECLASS
REMOTE_DTE_SUB:
        .WORD        REMOTE_DTE_SUBLEN
        .WORD        PSI$C_NCB_REMSUBADR
        .ASCIC       /26/
REMOTE_DTE_SUBLEN =  .-REMOTE_DTE_SUB
OPEN_DATA:
        .WORD        OPEN_DATA_LENGTH
        .WORD        PSI$C_NCB_USERDATA
        .ASCIC       /DATADATADATA/
OPEN_DATA_LENGTH =   .-OPEN_DATA
FAST_SELECT:
        .WORD        FAST_SELECT_LENGTH
        .WORD        PSI$C_NCB_FSEL
FAST_SELECT_LENGTH = .- FAST_SELECT
OPEN_INFO_LENGTH =   .- OPEN_INFO_START

94



Appendix D. Mailbox Messages
If your program is to handle incoming calls, you must associate a mailbox with the channel to the NW
unit. X.25 uses the mailbox to inform your program when incoming calls arrive, and when interrupts and
other network events occur; for example, call has been cleared, network failure, remote DTE failure.

For incoming calls, your program should read the NCB in the mailbox associated with the channel that
received the call. Your program must quote the incoming call identifier (PSI$C_NCB_ICI) to accept or
reject an incoming call.

If your program makes only outgoing calls, you need not use a mailbox. However, without using the
mailbox, you cannot receive notification of interrupts and other network events.

D.1. Format
Figure D–1 shows the general format of a mailbox message.

Figure D.1. Mailbox Message Structure

The contents of a mailbox are as follows:

MSGTYPE (2 bytes) This code indicates the type of INFO. Table D.1 and Table D.2 detail
the types of message that may be found in a mailbox.

UNIT (2 bytes) This is the binary number of the device unit to which the message
applies. For MSG$_CONNECT, the device unit number is zero.

COUNT1 (1 byte) This is a count of the characters in NAME.

95



Appendix D. Mailbox Messages

NAME (15 bytes) This is a counted string of up to 15 characters, giving the name of
the device to which the message applies: NVA for X.29 calls, NWA for X.25
calls.

COUNT2 (1 byte) This is a count of the characters in INFO. When the INFO field
contains an NCB, the length of the NCB should be determined by subtracting
the length of the MSGTYPE, UNIT, COUNT1, NAME, and COUNT2 fields
from the total mailbox message length, which is placed in the second word of
the IO status block. (Since an NCB can be more than 255 bytes in length, the
COUNT2 field may not reflect the NCB length accurately.)

INFO This is a counted string. The contents depend on the message type, and are
interpreted as shown in Table D.1 and Table D.2.

The value of byte 3 (reason for reset byte) of INFO for MSG$_RESET is one
of the following:

PSI$C_L3_NETWRK: Initiated by the PSDN
PSI$C_L3_NETERR: PSDN protocol error
PSI$C_L3_LNKDWN: Link down
PSI$C_L3_LNKUP: Link up
PSI$C_L3_LNKRRT: Link restarted
PSI$C_L3_LOCMGT: Network management function

Mailbox messages for X.25 and X.29 programming are shown in Table D.1 and Table D.2.

Table D.1. Mailbox Message Types for X.25 Programming

Type Code Meaning Mailbox Information

MSG$_INTMSG Interrupt message Interrupt byte
MSG$_CONNECT Incoming call/Call confirm NCB
MSG$_RESET Request to reset the virtual circuit Byte 1: Diagnostic code

Byte 2: Cause code
Byte 3: Reason for reset

MSG$_DISCON Either of:

● Incoming request to clear the
virtual circuit

● Completion of outgoing
request to clear the virtual
circuit

NCB

MSG$_INCDAT Unsolicited incoming data
available

(Not used)

MSG$_PATHLOST Line restart (PVC only) (Not used)
MSG$_NETSHUT DECnet has shut down (Network

processes only)
(Not used)

Table D.2. Mailbox Message Types for X.29 Programming

Type Code Meaning Mailbox Information

MSG$_CONNECT Incoming call confirm NCB

96



Appendix D. Mailbox Messages

Type Code Meaning Mailbox Information

MSG$_DISCON Incoming call reject NCB
MSG$_TRMUNSOLIC Incoming call NCB

D.2. Mailbox Message Sizes
Caution

You should ensure that the maximum message size of each mailbox is large enough to hold the expected
mailbox messages.

On OpenVMS IA-64/Alpha systems, for an Access application of type X25 and X29, X.25 for
OpenVMS creates a mailbox in which to place the incoming call details (the application locates
this mailbox via the logical SYS$NET). By default, X.25 for OpenVMS creates this mailbox with a
maximum message size of 512 bytes, which should be adequate for most configurations. However, if the
incoming call NCB contains Filter and DTE Class names having a total size of more than 200 bytes, the
default value for the mailbox’s maximum message size may need to be increased.

To increase this value, define the logical name X25$APPL_MBXMXMSG to be the required size. The
logical must be defined in the ‘‘SYSTEM’’ logical name table, and must be defined before X.25 for
OpenVMS is started. For example, add the following line to SYS$STARTUP:SYSTARTUP_VMS.COM
before the command @SYS$STARTUP:X25$STARTUP.COM:

$ define/system/exec X25$APPL_MBXMXMSG 800

Note that the mailbox’s buffer quota may also need to be increased. The default buffer quota given to
mailboxes created by X.25 for OpenVMS is the value of the SYSGEN parameter DEFMBXBUFQUO
—this may be increased by defining the logical name X25$APPL_MBXBUFQUO. For example,
add the following line to SYS$STARTUP:SYSTARTUP_VMS before the command @SYS
$STARTUP:X25$STARTUP.COM:

$ define/system/exec X25$APPL_MBXBUFQUO 1600

For more information on the relationship between mailbox message size and buffer quota, refer to the
description of $CREMBX in theVSI OpenVMS System Services Reference Manual: A-GETUAI [https://
docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-a-getuai/#JUN_143].

97

https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-a-getuai/#JUN_143
https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-a-getuai/#JUN_143
https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-a-getuai/#JUN_143


Appendix D. Mailbox Messages

98



Appendix E. Standard PAD
Parameters
This appendix describes the standard PAD parameters. Table E.1 lists the parameter codes and
parameter numbers.

Table E.1. PAD Parameter Codes

Parameter Number Code

1 PSI$K_X29_PAR_ESCAPE
2 PSI$K_X29_PAR_ECHO
3 PSI$K_X29_PAR_FORWARD
4 PSI$K_X29_PAR_TIMEOUT
5 PSI$K_X29_PAR_HOSTSYNC
6 PSI$K_X29_PAR_MESSAGES
7 PSI$K_X29_PAR_BREAK
8 PSI$K_X29_PAR_DISCARD
9 PSI$K_X29_PAR_CRFILL
10 PSI$K_X29_PAR_WRAP
11 PSI$K_X29_PAR_SPEED
12 PSI$K_X29_PAR_TTSYNC
13 PSI$K_X29_PAR_NEW_LINE
14 PSI$K_X29_PAR_LFFILL
15 PSI$K_X29_PAR_EDIT
16 PSI$K_X29_PAR_DELETE
17 PSI$K_X29_PAR_LINE_DELETE
18 PSI$K_X29_PAR_REDISPLAY
19 PSI$K_X29_PAR_DISPLAY_EDIT
20 PSI$K_X29_PAR_RESTRICT_ECHO
21 PSI$K_X29_PAR_PARITY
22 PSI$K_X29_PAR_PAGE_WAIT

Parameter 1 (PSI$K_X29_PAR_ESCAPE)
This specifies the ASCII character that the PAD function uses as the Escape character. For example, a
parameter value of 33 specifies ! as the Escape character. Specify one of the following values:

0 PAD does not enter command mode on receiving an Escape character.
1 PAD enters command mode on receiving the Escape character Ctrl/P.
2 to 31 Specify the Escape character. These values are extensions to the CCITT values.
32 to 127 Specify the Escape character.

99



Appendix E. Standard PAD Parameters

Parameter 2 (PSI$K_X29_PAR_ECHO)
This specifies whether the PAD echoes the input entered at the X.29 terminal. Refer to the VSI X.25 for
OpenVMS Utilities Guide for details of the relationship between PAD echoing and the OpenVMS local–
echo characteristic (SET TERMINAL/LOCAL_ECHO). Specify one of the following values:

0 No PAD echo.
1 PAD echo.

Parameter 3 (PSI$K_X29_PAR_FORWARD)
This specifies the characters that cause data to be transmitted from the PAD to the remote DTE. The
CCITT values are 0, 2, 6 (2 + 4), 18 (2 + 16) and 126 (2 + 4 + 8 + 16 + 32 + 64).

0 Forward data whenever a packet is full.
1 Any alphanumeric character (from A to Z, a to z, or 0 to 9).
2 CR

4 ESC, BEL, ENQ, ACK

8 DEL, CAN, DC2

16 EXT, EOT

32 HT, LF, VT, FF

64 Any control character not given previously.

Parameter 4 (PSI$K_X29_PAR_TIMEOUT)
This specifies the Timeout value for forwarding data.

0 Timeout.
1 to 255 Timeout value in units of 1/20 second.

Note that if parameter 15 is set to 1, timeouts are disabled.

Parameter 5 (PSI$K_X29_PAR_HOSTSYNC)
This specifies whether the PAD sends XON and XOFF control characters to the X.29 terminal in data
transfer mode. The host-based PAD treats parameter values 1 and 2 in the same way. Specify one of the
following values:

0 No device control.
1 XON/XOFF device control in data transfer mode.
2 XON/XOFF device control in both command mode and data transfer mode.

Parameter 6 (PSI$K_X29_PAR_MESSAGES)
This specifies whether messages from the PAD are sent to the X.29 terminal. Permitted values are any
combination of the following:

0 PAD messages suppressed.

100



Appendix E. Standard PAD Parameters

1 PAD messages transmitted.
4 (In command mode) PAD prompt transmitted.
8 PAD messages in nonstandard format. (This value is ignored by the host-based

PAD.)

Parameter 7 (PSI$K_X29_PAR_BREAK)
This specifies the actions taken by the PAD when the user presses Break. The OpenVMS Terminal
Driver does not recognize Break, and so the host-based command PAD BREAK is used to simulate the
Break action. Legal values are any combination of the following:

0 No action.
1 PAD sends an Interrupt to the remote DTE.
2 PAD sends a Reset to the remote DTE.
4 PAD sends Indication–of–break to the remote DTE.
8 PAD enters command mode.
16 PAD discards output to the terminal. This setting automatically sets PAD

Parameter 8 (PSI$K_X29_PAR_DISCARD) to value 1 (discard data from
remote DTE).

Parameter 8 (PSI$K_X29_PAR_DISCARD)
This specifies whether the PAD sends output from NV to the X.29 terminal.

This performs a similar function to Ctrl/O. However whereas Ctrl/O requests NV to discard all output
to the PAD, this parameter, if set, requests the PAD to discard the output received from NV. Hence, for
reasons of efficiency and cost, Ctrl/O is preferred.

Specify one of the following values:

0 Normal data delivery.
1 Discard data from remote DTE.

Parameter 9 (PSI$K_X29_PAR_CRFILL)
This specifies the number of padding characters after a Return. Permitted values are between 0 and 255.
Specify a value between 0 and 7.

Parameter 10 (PSI$K_X29_PAR_WRAP)
This specifies the character position where the PAD inserts a Return. For example, setting a value of 80
requests the PAD to insert a Return after the 80th character, and continue the text that follows on a new
line.

This parameter corresponds to the /WRAP and /WIDTH characteristics of the terminal. Set this
parameter to 0 for proper operation of X.29 terminals on OpenVMS. Otherwise, specify one of the
following values:

0 No wraparound.

101



Appendix E. Standard PAD Parameters

1 to 255 Specifies the maximum line length that the PAD will print or echo.

Parameter 11 (PSI$K_X29_PAR_SPEED)
This is a read-only parameter. The setting corresponds to the /SPEED characteristic of the terminal. Do
not attempt to set this parameter.

The parameter takes the following values:

Speed (bits/s) Parameter Value Speed (bits/s) Parameter Value

50 10 1200 3
75 5 75/1200 11
100 9 1800 7
110 0 2400 12
       
134.5 1 9600 14
150 6 19200 15
200 8 48000 16
300 2 56000 17
600 4 64000 18

Parameter 12 (PSI$K_X29_PAR_TTSYNC)
This specifies whether the PAD responds to XON and XOFF control characters sent from the X.29
terminal. Specify one of the following values:

0 No flow control.
1 Flow control on: the PAD responds to XON and XOFF control characters from

the terminal.

Parameter 13 (PSI$K_X29_PAR_NEW_LINE)
This specifies whether the PAD sends a LF with every Return received from the X.29 terminal for
transmission to NV or received from NV for forwarding to the X.29 terminal.

Set this parameter to 0 for correct operation of X.29 terminals on OpenVMS. Otherwise specify one, or
a combination, of the following values:

0 No LF inserted after CR.
1 LF inserted after every CR that is transmitted as data to the terminal.
2 LF inserted after every CR that is received as data to the terminal.
4 LF inserted after every CR that is echoed as data to the terminal.

Parameter 14 (PSI$K_X29_PAR_LFFILL)
This specifies the number of padding characters the PAD sends after a LF. Permitted values are as for
PSI$K_X29_PAR_CRFILL.

102



Appendix E. Standard PAD Parameters

Parameter 15 (PSI$K_X29_PAR_EDIT)
This parameter controls whether the PAD performs local editing when in data transfer mode.

You should set this parameter only when the terminal is set to /LOCAL_ECHO. Specify one of the
following values:

0 No local editing in data transfer mode.
1 Editing dependent on PAD parameters 16, 17, 18. This setting disables the idle

timer.

Parameter 16 (PSI$K_X29_PAR_DELETE)
This specifies the ASCII character that the PAD uses as the Delete character. This parameter is ignored
unless parameter 15 is set. Specify a value between 0 and 127:

0 No delete character allowed.
1 to 127 ASCII character code to be used for delete.

Parameter 17 (PSI$K_X29_PAR_LINE_DELETE)
This specifies the ASCII character that the PAD uses as the Line Delete character. This parameter is
ignored unless parameter 15 is set. Specify a value between 0 and 127.

Parameter 18 (PSI$K_X29_PAR_REDISPLAY)
This specifies the ASCII character that the PAD uses as the Line Redisplay character. This parameter is
ignored unless parameter 15 is set. Specify a value between 0 and 127.

Parameter 19 (PSI$K_X29_PAR_DISPLAY_EDIT)
This controls the type of line editing display, as follows:

0 No display for PAD editing.
1 Hardcopy type.
2 Video terminal type.
3 to 127 ASCII character used to display editing.

Parameter 20 (PSI$K_X29_PAR_RESTRICT_ECHO)
This specifies which characters are not echoed. Legal values are any combination of the following:

0 All characters echoed.
1 CR

2 LF

4 VT, HT, FF

8 BEL, BS

16 ESC, ENQ

103



Appendix E. Standard PAD Parameters

32 ACK, NAK, STX, SOH, EOT, ETB, ETX

64 The editing characters (as set by PSI$K_X29_PAR_DELETE, PSI$K_X29_
PAR_LINE_DELETE, PSI$K_X29_PAR_REDISPLAY_LINE).

128 DEL, and all other control characters.

Parameter 21 (PSI$K_X29_PAR_PARITY)
This controls parity generation and checking. Legal values are any combination of the following:

0 None.
1 Parity checking.
2 Parity generation.

Parameter 22 (PSI$K_X29_PAR_PAGE_WAIT)
This controls whether the PAD holds the display at the end of each page. Specify one of the following
values:

0 Page wait disabled.
1 to 255 Number of lines to display before waiting.

104



Appendix F. Programming
Examples
A number of X.25 and X.29 example programs are provided in the SYS$EXAMPLES: directory.

Table F.1 describes the example programs supplied on OpenVMS IA-64 and OpenVMS Alpha systems.
Table F.2 summarizes the languages for which example programs are provided.

Table F.1. Programming Examples (OpenVMS IA-64 and OpenVMS Alpha)

Program Description

X25$CHARGING An example of a charging program to analyze X.25 accounting
records.

X25$RECEIVE One of a pair of demonstration programs that transfer data entered
at the terminal from one OpenVMS system to another over a Packet
Switching Data Network. See also X25$SEND.

X25$SEND One of a pair of demonstration programs that transfer data entered
at the terminal from one OpenVMS system to another over a Packet
Switching Data Network. See also X25$RECEIVE.

X25$X29_DESTINATION A simple example of a program in which an X.29 destination
prompts the X.29 user for a password before allowing them to log in.

Table F.2. Program/Language Matrix (OpenVMS IA-64 and OpenVMS Alpha)

Example Program C COBOL FORTRAN MACRO PASCAL

X25$CHARGING Yes - - - -
X25$RECEIVE Yes Yes Yes Yes Yes
X25$SEND Yes Yes Yes Yes Yes
X25$X29_
DESTINATION

Yes - - Yes Yes

Table F.3 describes the example programs supplied on OpenVMS VAX systems. Table F.4 summarizes
the languages for which example programs are provided.

Table F.3. Programming Examples (OpenVMS VAX)

Program Description

PSI$CHARGING An example of a charging program to analyze X.25 accounting
records.

PSI$X25_RECEIVE One of a pair of demonstration programs that transfer data entered
at the terminal from one OpenVMS system to another over a Packet
Switching Data Network. cf. PSI$X25_SEND.

PSI$X25_SEND One of a pair of demonstration programs that transfer data entered
at the terminal from one OpenVMS system to another over a Packet
Switching Data Network. cf. PSI$X25_RECEIVE.

PSI$X29_DESTINATION A simple example of a program in which an X.29 destination
prompts the X.29 user for a password before allowing them to log in.

105



Appendix F. Programming Examples

Program Description

X25$X29_NETPROCESS A simple example of a program in which an X.29 network process
validates a password before allowing the X.29 caller to log in.

X25$X29_NV_UNIT_NUMBER An example that determines the unit number of a device, given the
device name.

X25$X29_OUTGOING A simple example of an X.29 program that is run to establish an
X.29 circuit from a host to a remote PAD.

Table F.4. Program/Language Matrix (OpenVMS VAX)

Example Program BASIC C COBOL FORTRAN MACRO PASCAL

PSI$CHARGING - Yes - - - -
PSI$X25_RECEIVE Yes Yes Yes Yes Yes Yes
PSI$X25_SEND Yes Yes Yes Yes Yes Yes
PSI$X29_
DESTINATION

- Yes - - Yes Yes

PSI$X29_
NETPROCESS

- - - - Yes -

PSI$X29_NV_
UNIT_NUMBER

- - - - Yes -

PSI$X29_
OUTGOING

- Yes - - Yes Yes

106


	VSI X.25 for OpenVMS Programming Reference
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. OpenVMS Documentation
	6. VSI Encourages Your Comments
	7. Terminology
	8. Conventions

	Chapter 1. Introduction
	1.1. System Services
	1.1.1. Format of System Service Descriptions
	1.1.2. Syntax Conventions
	1.1.3. Common QIO Arguments

	1.2. Status Codes Returned at System Service Completion
	1.2.1. Common QIO Return Status Codes


	Chapter 2. Common System Services
	$ASSIGN
	$CANCEL
	$CREMBX
	$DASSGN
	$GETDVI
	$QIO(IO$_ACCESS)
	$QIO(IO$_ACCESS!IO$M_ABORT)
	$QIO(IO$_ACCESS!IO$M_ACCEPT)
	$QIO(IO$_ACCESS!IO$M_REDIRECT)
	$QIO(IO$_ACPCONTROL)
	$QIO(IO$_DEACCESS)
	$QIO(IO$_READVBLK)
	$QIO(IO$_WRITEVBLK)

	Chapter 3. X.25 System Services
	$QIO(IO$_NETCONTROL, PSI$K_INTACK)
	$QIO(IO$_NETCONTROL, PSI$K_INTERRUPT)
	$QIO(IO$_NETCONTROL, PSI$K_RESET)
	$QIO(IO$_NETCONTROL, PSI$K_RESTART)

	Chapter 4. X.29 System Services
	$QIO(IO$_NETCONTROL, PSI$K_X29_READ)
	PSI$K_X29_BREAK_ACTION
	PSI$K_X29_HANGUP_PARAMS
	PSI$K_X29_HOLD_TIMER
	PSI$K_X29_HOST_ECHO_PARAMS
	PSI$K_X29_INT_ACTION
	PSI$K_X29_LOCAL_ECHO_PARAMS
	PSI$K_X29_PAD_PARAMS
	PSI$K_X29_TEMP_NOHANG
	$QIO(IO$_NETCONTROL, PSI$K_X29_READ_SPECIFIC)
	PSI$K_X29_PAD_PARAMS
	$QIO(IO$_NETCONTROL, PSI$K_X29_SET)
	PSI$K_X29_BREAK_ACTION
	PSI$K_X29_HANGUP_PARAMS
	PSI$K_X29_HOST_ECHO_PARAMS
	PSI$K_X29_HOLD_TIMER
	PSI$K_X29_INT_ACTION
	PSI$K_X29_LOCAL_ECHO_PARAMS
	PSI$K_X29_PAD_PARAMS
	PSI$K_X29_PAD_RESELECTION
	PSI$K_X29_TEMP_NOHANG

	Chapter 5. Status Codes Returned at System Service Completion
	5.1. Testing the Return Status Code
	5.2. Special Return Conditions
	5.2.1. Resource Wait Mode
	5.2.2. System Service Failure Exception Mode

	5.3. Obtaining Values for Other Symbolic Codes

	Appendix A. Summary of X.25 System Service Calls
	A.1. System Services for Setting Up and Clearing Communications
	A.2. System Services for Handling Incoming Calls
	A.3. System Services for Handling Control and Data Messages

	Appendix B. Summary of X.29 System Service Calls
	B.1. System Services for Setting Up and Clearing Communication
	B.2. System Services for Handling Incoming Calls
	B.3. System Services for Reading and Setting PAD Parameters and NV Terminal Characteristics
	B.4. Terminal Driver Functions

	Appendix C. Network Connect Block (NCB)
	C.1. Description of the NCB
	C.2. NCB Format
	C.3. Data Type Format Definitions
	C.4. NCB Item Functions
	C.5. NCB Item Descriptions
	C.6. Example NCB

	Appendix D. Mailbox Messages
	D.1. Format
	D.2. Mailbox Message Sizes

	Appendix E. Standard PAD Parameters
	Appendix F. Programming Examples

