

 8 June 2023

 VSI C X7.4 for OpenVMS x86 Systems Release Notes

 Copyright 2023 Hewlett-Packard Company

 Copyright 2023 VMS Software Inc.

1 INTRODUCTION

This document contains the release notes for the VSI C X7.4-785

compiler for OpenVMS for x86-64 systems, which is a native x86-64

image generating native x86-64 object modules. When installed, the

operation and behavior of the compiler is very similar to that of VSI

C V7.4 for OpenVMS Integrity.

The native VSI C compiler in this kit identifies itself with a version

number, for example:

$ CC /VERSION

VSI C X7.4-725 (GEM 50X23) on OpenVMS x86_64 V9.2

$

See the section below on Known Restrictions for important information

about missing or incomplete features in the field test compiler.

For additional information on the compiler, see also:

 o VSI C Language Reference Manual

 o VSI C User's Guide for OpenVMS Systems

 o VSI C Run-Time Library Reference Manual for OpenVMS Systems

 o Enter the command HELP CC at the $ prompt.

2 PREREQUISITES

The VSI C compiler requires a minimum of V9.2 "update 2" to install

and execute. In addition, there is a DEBUG ECO that is needed for

debugger operation. Make sure you have installed the following

packages from the VSI Service Platform (https://sp.vmssoftware.com)

 o x86-vms92xpcsi-v0100

 o vsi-x86vms-vms92xupdate-v0200

 o vms92xdebug-v0100

VSI C X7.4 for OpenVMS x86-64 Release Notes Page 2

3 INSTALLATION

To install VSI C for OpenVMS x86-64 systems, set the default directory

to a writeable directory to allow the IVP to succeed. Then run the

PRODUCT INSTALL command, pointing to the kit location. For example:

$ SET DEFAULT SYS$MANAGER

$ PRODUCT INSTALL C/SOURCE=kit-device:[kit-location]

After installation, these C release notes will be available at:

SYS$HELP:CC.RELEASE_NOTES

Here is a sample default installation log:

$ product install c

Performing product kit validation of signed kits ...

%PCSI-I-CANNOTVAL, cannot validate DKA200:[MYDIR]VSI-X86VMS-C-X0704-725-1.PCSI;1

-PCSI-I-NOTSIGNED, product kit is not signed and therefore has no manifest file

The following product has been selected:

 VSI X86VMS C X7.4-725 Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product and for

any products that may be installed to satisfy software dependency requirements.

Configuring VSI X86VMS C X7.4-725: VSI C for OpenVMS

 Copyright 2023 VMS Software, Inc.

 This software is sold by VMS Software, Inc.

 PAKs used: C or C-USER

* This product does not have any configuration options.

 Copyright 2023 VMS Software, Inc.

 VSI, the VSI logo, Alpha and OpenVMS are trademarks of

 VMS Software, Inc. in the U.S. and/or other countries.

 Confidential computer software. Valid license from HP

 required for possession, use or copying. Consistent with

 FAR 12.211 and 12.212, Commercial Computer Software, Computer

 Software Documentation, and Technical Data for Commercial

 Items are licensed to the U.S. Government under vendor's

 standard commercial license.

VSI C X7.4 for OpenVMS x86-64 Release Notes Page 3

Execution phase starting ...

The following product will be installed to destination:

 VSI X86VMS C X7.4-725 DISK$X86:[VMS$COMMON.]

Portion done: 0%...90%...100%

The following product has been installed:

 VSI X86VMS C X7.4-725 Layered Product

%PCSI-I-IVPEXECUTE, executing test procedure for VSI X86VMS C X7.4-725 ...

%PCSI-I-IVPSUCCESS, test procedure completed successfully

VSI X86VMS C X7.4-725: VSI C for OpenVMS

 The release notes are located in the file SYS$HELP:CC.RELEASE_NOTES.

 A startup file SYS$STARTUP:DECC$STARTUP.COM has been provided.

 It contains commands which can be executed after the product install

 procedure has been run and at startup to allow for the best compilation

 performance. You may want to invoke this command file from your

 system's site-specific start up file. This command file does not

 have to be invoked for correct operation of VSI C.

$

4 DIFFERENCES BETWEEN THE ITANIUM C COMPILER AND THE X86-64 C

 COMPILER

This C compiler for x86-64 behaves very much like the current native

I64VMS C compiler (V7.4) in terms of command line options, language

features, etc.

4.1 Linkage #pragmas

The "#pragma linkage_ia64" pragma is not supported on x86-64

platforms. The "#pragma linkage_alpha" pragma is treated as the same

as "#pragma linkage".

4.2 Builtin Functions

The philosophy for the builtin functions is that most any existing

uses of IA64 builtins should continue to work under x86-64 where

possible, but that the compiler will issue diagnostics where it would

be preferable to use a different builtin for x86-64. For this reason,

the builtins.h header has not been removed nor have any of the any of

the IA64 declarations been conditionalized out. Instead, it contains

comments noting which ones are not available or not the preferred form

VSI C X7.4 for OpenVMS x86-64 Release Notes Page 4

for x86-64. Furthermore, a significant number of the __PAL builtins

from Alpha systems have been implemented as system services on OpenVMS

x86-64 instead of actual compiler builtins, but using an

implementation technique that is transparent to source code.

 o There is no support for the asm/fasm/dasm intrinsics

 (actually declared in <c_asm.h>), or any similar mechanism to

 insert arbitrary sequences of machine instructions into the

 generated code. The generation of specific machine

 instructions can only be accomplished using the builtins

 declared in builtins.h, or by calling functions written in

 assembly language.

 o The functionality provided by the special-case treatment of

 R26 in an Alpha asm, as in asm("MOV R26,R0"), is provided by

 a new builtin function: __int64 __RETURN_ADDRESS(void).

 This builtin produces the address to which the function

 containing the builtin call will return (the value of R26 on

 entry to the function on Alpha, the value of B0 on entry to

 the function on IA64, or the value from the top of the stack

 on entry to the function on x86-64). It cannot be used

 within a function specified to use non-standard linkage or in

 a varargs function.

 o There is no compiler-based support for any of the __PAL calls

 other than the 24 queue-manipulation builtins. The

 queue-manipulation builtins generate calls to VMS system

 services SYS$<name>, where <name> is the name of the builtin

 with the leading underscores removed. Any other __PAL calls

 declared in builtins.h are actually supported through macros

 defined in the header pal_builtins.h provided in

 sys$library:sys$starlet_c.tlb. Note that builtins.h contains

 a "#include <pal_builtins.h>" at the end. Typically, a macro

 in pal_builtins.h effectively hides a declaration in

 builtins.h, and transforms an invocation of an Alpha builtin

 into a call to a system service (declared in pal_services.h)

 that will perform the equivalent function on OpenVMS x86-64.

 Two notable exceptions are __PAL_GENTRAP and __PAL_BUGCHK,

 which instead invoke the x86-64-specific compiler builtin

 __break2().

 o There is no support for the various Alpha floating-point

 builtins used by the math library (e.g. operations with

 chopped rounding and conversions).

 o Most builtins that take a retry count provoke a warning, and

 the compiler evaluates the count for possible side effects

 and then ignores it, invoking the same function without a

 retry count. This behavior is due to the fact that the IA64

 and x86-64 architectures lack the Alpha-specific retry

 behavior which is allowed by Alpha

 load-locked/store-conditional sequences. However, IA64 and

 x86-64 do support the retry behavior for __LOCK_LONGRETRY and

 __ACQUIRE_SEM_LONG_RETRY, since the retry behavior in these

 builtins involve comparisons of data values, not just

VSI C X7.4 for OpenVMS x86-64 Release Notes Page 5

 load-locked/store-conditional.

 o Note that the comments in builtins.h reflect only what is

 explicitly present in that header itself, and in the compiler

 implementation. The user should also consult the content and

 comments in pal_builtins.h to determine more accurately what

 functionality is effectively provided by including

 builtins.h. E.g., if a program explicitly declares one of

 the Alpha builtins and invokes it without having included

 builtins.h, the compiler may issue the BIFNOTAVAIL error

 regardless of whether or not the functionality might be

 available through a system service. If the compilation does

 include builtins.h, and BIFNOTAVAIL is issued, then most

 likely there is no support for that functionality; but

 another (remote) possibility is that there is a problem in

 the version of pal_builtins.h that is being included by

 builtins.h.

4.2.1 X86-64 Specific Builtins -

The builtins.h header file contains a section at the top

conditionalized just to __x86_64 with all of the planned support for

x86-64-specific builtins. This section includes macro definitions for

all of the registers that can be specified with the _getReg, _setReg,

_getIndReg, or _setIndReg builtins. Parameters that are

const-qualified require an argument that is a compile-time constant.

 /* Clear and set interrupt flag */

 void __clearInterruptFlag();

 void __setInterruptFlag();

 /* Load and store global descriptor table register */

 void __lgdt(__int64 __address);

 void __sgdt(__int64 __address);

 /* Load and store interrupt descriptor table register*/

 void __lidt(__int64 __address);

 void __sidt(__int64 __address);

 /* Load and store through the FS and GS descriptors */

 unsigned char __readFsByte (unsigned __int64 offset);

 unsigned short int __readFsWord (unsigned __int64 offset);

 unsigned int __readFsLong (unsigned __int64 offset);

 unsigned __int64 __readFsQuad (unsigned __int64 offset);

 void __writeFsByte (unsigned __int64 offset, unsigned char data);

 void __writeFsWord (unsigned __int64 offset, unsigned short int data);

 void __writeFsLong (unsigned __int64 offset, unsigned int data);

 void __writeFsQuad (unsigned __int64 offset, unsigned __int64 data);

 unsigned char __readGsByte (unsigned __int64 offset);

 unsigned short int __readGsWord (unsigned __int64 offset);

VSI C X7.4 for OpenVMS x86-64 Release Notes Page 6

 unsigned int __readGsLong (unsigned __int64 offset);

 unsigned __int64 __readGsQuad (unsigned __int64 offset);

 void __writeGsByte (unsigned __int64 offset, unsigned char data);

 void __writeGsWord (unsigned __int64 offset, unsigned short int data);

 void __writeGsLong (unsigned __int64 offset, unsigned int data);

 void __writeGsQuad (unsigned __int64 offset, unsigned __int64 data);

 void __invlpg (__int64 __address);

 void __atomicAndGsLong (unsigned __int64 offset, unsigned int expression);

 void __atomicAndGsQuad (unsigned __int64 offset, unsigned __int64 expression);

 void __atomicOrGsLong (unsigned __int64 offset, unsigned int expression);

 void __atomicOrGsQuad (unsigned __int64 offset, unsigned __int64 expression);

 void __atomicIncrGsLong (unsigned __int64 offset);

 void __atomicIncrGsQuad (unsigned __int64 offset);

 void __atomicDecrGsLong (unsigned __int64 offset);

 void __atomicDecrGsQuad (unsigned __int64 offset);

 int __atomicCmpSwapGsLong (unsigned __int64 offset, unsigned int compexpr, unsigned int

newexpr);

 int __atomicCmpSwapGsQuad (unsigned __int64 offset, unsigned __int64 compexpr, unsigned

__int64 newexpr);

 unsigned __int64 __getReg(__Integer_Constant __whichReg);

 void __setReg(__Integer_Constant __whichReg,

 unsigned __int64 __value);

 unsigned __int64 __getIndReg(__Integer_Constant __whichIndReg,

 __int64 __index);

 void __setIndReg(__Integer_Constant __whichIndReg,

 __int64 __index,

 unsigned __int64 __value);

 void __break(__Integer_Constant __break_arg); /* moved here from ia64 - Clair Grant */

 void __break2(__Integer_Constant __break_code, /* moved here from ia64 - Clair Grant */

 unsigned __int64 __r17_value);

 int __prober(__int64 __address, unsigned int __mode);

 int __probew(__int64 __address, unsigned int __mode);

 __int64 __RETURN_ADDRESS(void);

4.3 Default Floating Point Format

On OpenVMS x86-64 and OpenVMS I64 systems, /FLOAT=IEEE_FLOAT is the

default floating-point representation. IEEE format data is assumed

and IEEE floating-point instructions are used. There is no hardware

support for floating-point representations other than IEEE, although

you can specify the /FLOAT=D_FLOAT or /FLOAT=G_FLOAT compiler option.

These VAX floating-point formats are supported in the x86-64 compiler

by generating run-time code that converts VAX floating-point formats

to IEEE format to perform arithmetic operations, and then converting

the IEEE result back to the appropriate VAX floating-point format.

This behavior imposes additional run-time overhead and some loss of

accuracy compared to performing the operations in hardware on Alpha

VSI C X7.4 for OpenVMS x86-64 Release Notes Page 7

and VAX systems. The software support for the VAX formats is provided

to meet an important functional compatibility requirement for certain

applications that need to deal with on-disk binary floating-point

data.

On OpenVMS x86-64 and OpenVMS I64 systems, the default for /IEEE_MODE

is DENORM_RESULTS, which is a change from the default of

/IEEE_MODE=FAST on Alpha systems. This means that by default,

floating-point operations may silently generate values that print as

Infinity or NaN (the industry-standard behavior) instead of issuing a

fatal run-time error as they would when using VAX floating-point

format or /IEEE_MODE=FAST. Also, the smallest-magnitude nonzero value

in this mode is much smaller because results are allowed to enter the

denormal range instead of being flushed to zero as soon as the value

is too small to represent with normalization.

The conversion between VAX floating-point formats and IEEE formats on

the x86-64 architecture is a transparent process that will not impact

most applications. All you need to do is recompile your application.

Because IEEE floating-point format is the default, unless your build

explicitly specifies VAX floating-point format options, a simple

rebuild for x86-64 systems will use the native IEEE formats directly.

For the large class of programs that do not directly depend on the VAX

formats for correct operation, this is the most desirable way to build

for x86-64 systems.

When you compile an OpenVMS application that specifies an option to

use VAX floating-point on an x86-64 system, the compiler automatically

generates code for converting floating-point formats. Whenever the

application performs a sequence of arithmetic operations, this code

does the following:

 o Converts VAX floating-point formats to either IEEE single or

 IEEE double floating-point formats.

 o Performs arithmetic operations in IEEE floating-point

 arithmetic.

 o Converts the resulting data from IEEE formats back to VAX

 formats.

In a few cases, arithmetic calculations might have different results

because of the following differences between VAX and IEEE formats:

 o Values of numbers represented

 o Rounding rules

 o Exception behavior

These differences might cause problems for applications that do any of

the following:

VSI C X7.4 for OpenVMS x86-64 Release Notes Page 8

 o Depend on exception behavior

 o Measure the limits of floating-point behaviors

 o Implement algorithms at maximal processor-specific accuracy

 o Perform low-level emulations of other floating-point

 processors

 o Use direct equality comparisons between floating-point

 values, instead of appropriately ranged comparisons (a

 practice that is extremely vulnerable to changes in compiler

 version or compiler options, as well as architecture)

When applied to a compilation that does not contain a main program,

the /IEEE_MODE qualifier does have some effect: it might affect the

evaluation of floating-point constant expressions, and it is used to

set the EXCEPTION_MODE used by the math library for calls from that

compilation. However, the qualifier has no effect on the exceptional

behavior of floating-point calculations generated as inline code for

that compilation. Therefore, if floating-point exceptional behavior

is important to an application, all of its compilations, including the

one containing the main program, should be compiled with the same

/IEEE_MODE setting.

Programs containing undefined floating-point behavior, such as

assigning a negative floating-point number to an unsigned integer

variable, could generate different results when compiled and run on

x86-64 systems. The compiler diagnostics and runtime results can both

differ. One runtime difference is the case where one system generates

an exception, while the other silently produces a result.

4.4 Predefined Macros

The x86-64 compiler predefines a number of macros, with the same

meanings as in compilers on prior architectures. These predefined

macros are __x86_64 and __x86_64__.

5 ENHANCEMENTS IN VERSION V7.5

 o /SHOW=[NO]FULLPATH

 Specifying "/SHOW=FULLPATH" prints the location of included

 headers in a listing file and as informational messages. The

 locations will not include any defined logicals, but will be

 the actual disk and directory locations even if any logicals

 were defined with /TRANSLATION_ATTRIBUTE=CONCEALED. The

 default is /SHOW=NOFULLPATH.

VSI C X7.4 for OpenVMS x86-64 Release Notes Page 9

6 KNOWN RESTRICTIONS IN THE FIELD TEST COMPILER

 o The C compiler contains partial support for the /OPTIMIZE

 qualifier. It does not fully support all of the suboptions

 from the /OPTIMIZE qualifier. The degree of optimization

 will increase in future updates.

 o The debug support from the compiler may not correctly

 describe every possible data type. We expect to improve the

 debug support over the next several field test updates and

 future OpenVMS debugger releases.

 o The /MACHINE_CODE qualifier currently is ignored. As a

 temporary workaround, you can use the

 ANALYZE/OBJECT/DISASSEMBLE command.

 o Complex datatype math functions currently return incorrect

 values.

 o The #dictionary pragma currently is not supported.

 o long double

 The long double data type is not yet fully supported. Known

 issues include compile-time initialization of global/static

 variables (including structures/unions with long double data

 types) and calls to math intrinsic functions.

 o varargs.h vs stdarg.h

 Due to how the AMD64 ABI Calling Standard is defined,

 varargs.h is awkward to support. Most Linux platforms don't

 even support it at all. We have tried to retain as much as

 possible, but strongly suggest that you convert to using

 <stdarg.h> instead. It will require source modifications but

 they will work on Alpha and Itanium so you can keep common

 code going forward.

 o Variable initializers that contain math exceptions do not

 properly get signaled by the compiler.

 o The /IEEE_MODE and /ROUNDING_MODE qualifers are not currently

 supported and are ignored.

 o The /CHECK=UNINITIALIZED_VARIABLES is not supported and may

 cause a run-time error.

 o If the /FIRST_INCLUDE qualifier is used to specify more than

 one header-file, and the first logical source line of the

 primary source file spans physical lines (i.e. it either

 begins a C-style delimited comment that is not completed on

 that line, or the last character before the end-of-line is a

 backslash line-continuation character), then the compiler

 will give an internal error. Workarounds are either to make

VSI C X7.4 for OpenVMS x86-64 Release Notes Page 10

 sure that the first logical line of the primary source file

 does not span physical lines (e.g. make it a blank line), or

 to avoid specifying more than one header in the

 /FIRST_INCLUDE qualifier (e.g. use a single /FIRST_INCLUDE

 header that #includes all of the headers you want to precede

 the first line of the primary source file).

 o The field test C compiler when used without optimization

 processes unused static functions resulting in linker

 warnings.

 For example, the following program will get link warnings:

 #include <stdio.h>

 extern int bar(void);

 void main(void)

 {

 puts("Success");

 }

 static int foo()

 {

 return bar(); /* Should not get undefined for bar() */

 }

 With the field test compiler:

 $ cc/nooptimize test.c

 $ link test

 %ILINK-W-NUDFSYMS, 1 undefined symbol:

 %ILINK-I-UDFSYM, BAR

 %ILINK-W-USEUNDEF, undefined symbol BAR referenced

 section: $CODE$

 offset: %X0000000000000029

 module: TEST

 file: DKA200:[MYDIR]TEST.OBJ;1

 $

 No warnings are issued during linking on Itanium for this

 same test.

 o No warnings are issued on case sensitive variables with the

 field test compiler.

 Definitions of variables which differ only by case are not

 reported. For example, the following program gets warnings

 from the Itanium compiler, but the field test compiler does

 not issue any warning:

 int xxxx = 1;

 int XXXX = 2;

 int XxXx = 3;

 With the Itanium compiler:

VSI C X7.4 for OpenVMS x86-64 Release Notes Page 11

 $ cc test.c

 int XXXX = 2;

 ^

 %CC-W-DUPEXTERN, The declaration of "XXXX" will map to the same

 external name as the declaration of "xxxx" at line number 1 in

 file DKA200:[MYDIR]TEST.C;1.

 at line number 2 in file DKA200:[MYDIR]TEST.C;1

 int XxXx = 3;

 ^

 %CC-W-DUPEXTERN, The declaration of "XxXx" will map to the same

 external name as the declaration of "xxxx" at line number 1 in

 file DKA200:[MYDIR]TEST.C;1.

 at line number 3 in file DKA200:[MYDIR]TEST.C;1

 $

 o The field test compiler does not issue warnings for

 uninitialized variables

 References to an uninitialized variable will get a warning

 with the Itanium compiler, but not with the x86-64 field test

 compiler.

 o Some compiler errors are printed only to SYS$OUTPUT, not to

 SYS$ERROR.

 For example:

 $ TYPE TEST.C

 // Dummy test to make sure we generate diagnostic

 z;

 $

 $ DEFINE SYS$ERROR E.DOC

 $ CC TEST.C

 z;

 .^

 %CC-W-NOTYPES, Declaration has no type or storage class.

 at line number 2 in file TEST.C;1

 $ DEASSIGN SYS$ERROR

 $ TY E.DOC

 $

 o The field test compiler does not report invalid references to

 restricted pointers

 For the following example test:

 #include <stdio>

 int * __restrict a;

 int * __restrict b;

 int c = 5;

 void main(void) {

 a = &c;

VSI C X7.4 for OpenVMS x86-64 Release Notes Page 12

 b = a;

 *b = 1;

 printf("%d\n", *a);

 }

 No warning is issued by the field test compiler while the

 itanium compiler does issue a warning:

 $ cc test.c

 $ cc dev1053.c

 *b = 1;

 ^

 %CC-W-BADALIAS, Reference through restricted pointer b uses a

 pointer value based on different restricted pointer, a at line

 number 9 in file DISK1:[TEST]TEST.C;1

 $

7 REPORTING PROBLEMS

Please report problems or offer feedback using the VSI Support Portal.

