
VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

 OpenVMS x86-64 VSI C++ Release Notes
 Version: 230731

 Copyright 2023 VMS Software, Inc.

 *** IMPORTANT ***
 Starting from 230718 version all upcoming kits will require OpenVMS V9.2-1.
 Please upgrade your systems.

1 VSI C++

This kit includes the field-test VSI C++ x86-64 compiler. This compiler
runs on OpenVMS x86 and generates code for OpenVMS x86.

The compiler is based on the LLVM Clang compiler with additional OpenVMS
features. You can learn more about Clang at https://clang.llvm.org .

The PCSI package provides two C++ compilers and the CXX demangling tool:

 1. CLANG - this compiler has a UNIX-style command line and is invoked
 as a OpenVMS foreign-command. To use this compiler, you will need to call
 the SYS$STARTUP:CXX$STARTUP.COM command file to set up the CLANG DCL symbol.

 2. CXX - this compiler has a DCL command line that is compatible with the
 C++ compiler on OpenVMS IA64. It currently does not support all possible
 qualifiers. Unsupported qualifiers are silently ignored. See section 1.5
 for a summary of the qualifiers.

 The "$ HELP CXX" prints out general information about CXX compiler and lists
 all supported qualifiers. First listed are qualifiers that have
 actual effect, and then the qualifiers that are ignored for now.

 3. CXX$DEMANGLE - the demangling tool called CXX$DEMANGLE. It is invoked as a
 OpenVMS foreign-command. The SYS$STARTUP:CXX$STARTUP.COM command file defines
 the CXX$DEMANGLE DCL symbol. The tool is taken from LLVM tool-set known as
 llvm-cxxfilt and uses a UNIX-style command line. For more information:

 $ CXX$DEMANGLE --help

The kit contains a log file of changes for this release and for prior releases.

 $ type SYS$HELP:CXX.CHANGELOG

The compiler behaves very much like the Linux version of the clang compiler in
terms of language features. The primary differences is the support of the
OpenVMS-specific features, pragmas, and predefined symbols.

VSI C++ predefines common OpenVMS symbols much like the Itanium C++ compiler
(for example, VMS, __VMS, __vms, __INITIAL_POINTER_SIZE) as well as industry
standard symbols such as __x86_64 and __x86_64__.

Unlike a traditional UNIX compiler which "compiles and links" with a
single command, the compiler on OpenVMS only compiles (ie, the equivalent of the
"-c" option on UNIX).

There are two RTLs to support C++ (LIBCXX and LIBCXXABI). C++ provides two
versions of these libraries, static and shared. They are copied to the
SYS$COMMON:[SYSLIB] directory during the installation. They are inserted into
SYS$LIBRARY:IMAGELIB.OLB as well. So, if the program need to be linked against
shared libraries, they will be found automatically. However, if the program
needs to be linked against static ones, you need to provide them explicitly, or

Copyright 2022-2023 VMS Software Inc. 1 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

you can use SYS$COMMON:[SYSHLP.EXAMPLES]CXX.OPT (or SYS$EXAMPLES:CXX.OPT) file.

For example,

// HW.CXX
#include <iostream>

int main()
{
 std::cout << "Hello World!\n";
 return 0;
}

$ CXX HW.CXX
$ LINK HW ! Link against installed shared libraries
$ RUN HW
Hello World!
$ LINK HW,SYS$EXAMPLES:CXX/OPT ! Link against static libraries
$ RUN HW
Hello World!

The OpenVMS x86 linker places code into 64-bit address by default (the default
on Alpha and Itanium was to place code into 32-bit address space). Programs should
not notice the difference. The linker creates small trampolines in 32-bit address
space so the address of a routine will still fit into a 32-bit variable.

1.1 OpenVMS Specific Pragmas

The compilers have been extended to support OpenVMS specific pragmas which include:

 #pragma pointer_size [options]
 #pragma required_pointer_size [options]
 #pragma [no]member_alignment [options]
 #pragma extern_model [options]
 #pragma extern_prefix [options]
 #pragma include_directory <string-literal>

Other OpenVMS pragmas are processed but only have partial/limited support
at present. The #pragma message is supported but the names of the error
messages are different between Itanium and x86 so they need to be modified.

Notes:
* The #pragma pointer_size pragma is active only when the command line option
 /POINTER_SIZE (or -pointer-size with the Linux command line) is given. This
 matches the behavior of the VSI C++ Itanium compiler.

 Neither /POINTER_SIZE (-pointer-size) nor #pragma [required_]pointer_size has any
 effect on vptr. The size of virtual pointer is always 64 bit.

* The option provided to #pragma nomember_alignment [option] has a meaning of
 base alignment of the structure. If provided appropriate alignment attribute
 is set on the structure declaration.

 There are some differences from IA64 CXX member alignment:

 * In IA64 CXX:
 struct
 /*
 ** This directive does not change the alignment of s1 because we've
 ** already started the struct.
 */
 #pragma nomember_alignment

Copyright 2022-2023 VMS Software Inc. 2 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

 {
 ...
 } s1;

 But on OpenVMS x86, it does change the alignment. It is best to use
 the pragma prior to the struct definition.

 * In IA64 CXX the #pragma pack cancels the base alignment defined by

 #pragma nomember_alignment <base_alignment>

 But on OpenVMS x86, #pragma pack has no effect on base alignment.

* We have support for #pragma extern_model, that includes
 strict_refdef, common_block, relaxed_refdef, globalvalue, save and restore options support.

 The following attributes are available:

 gbl lcl
 shr noshr
 wrt nowrt
 ovr con
 exe noexe
 vec novec

 and alignments:

 byte
 word
 long
 quad
 octa

* OpenVMS style #pragma message is also available. Currently, we support only

#pragma message [option1] ("message-list")

format.

Parameter [option1] must be one of the following keywords:
 enable - Enables issuance of the messages specified in the message-list
 disable - Disables issuance of the messages specified int the message-list
 error - Sets the severity of each message in the message list to Error.
 fatal - Sets the severity of each message in the message list to Fatal.
 informational/warning - Sets the severity of each message in the message list to Warning.
 save - Saves the current state of the compiler messages.
 restore - Restores the saved state of the compiler messages.

Example:
 // example.cpp
 #pragma message enable ("unused-variable")
 #pragma message disable ("return-type implicitly-unsigned-literal")
 int foo() {
 long long a = 12341234123412341234;
 int b = a;
 }

So with this example you should get something like this warning
 "warning: unused variable 'a' [-Wunused-variable]"

Values for (message-list) is the name following the message severity code letter.

Copyright 2022-2023 VMS Software Inc. 3 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

In this example "unused-variable" message is enabled and
"return-type" and "implicitly-unsigned-literal" are disabled. The values in
message-list should be space separated.

NOTE: Itanium CXX compiler's message identifiers not supported (silently ignored),
you should use clang's respective message ids. Also, it's impossible
to reduce message severity to warning after it was set to error or fatal,
but it's available to reduce from fatal to error.

1.2 TLB And Headers

The C++ compiler now contains support to search and use text-libraries (TLB)
with the /LIBRARY qualifier and with automatic searches for headers performed
by the compiler. Prior C++ kits on OpenVMS V9.2 systems contained private
copies of headers with C++ specific changes. All of these changes are now
in the V9.2-1 system-supplied TLB files and the C++ kit no longer provides
these special headers. With this change, the C++ kit isn't supported on V9.2
systems since it would use system-supplied headers without the proper C++ support.
This would result in compilation failures and incorrect run-time behavior.

Installation places C++ standard library headers in the
SYS$COMMON:[VSICXX$LIB.INCLUDE.LIB_CXX] directory.

The DCL CXX command knows the location of these headers. The CLANG DCL symbol
defined by the SYS$STARTUP:CXX$STARTUP.COM command file also includes
the location of these headers.

1.3 Differences Between C++ on OpenVMS Itanium and OpenVMS x86

The datatypes 'long', 'size_t', 'nullptr_t', 'ptrdiff_t' are 64-bits wide
on OpenVMS x86 but only 32-bits wide on OpenVMS Itanium.

The default size for pointers is 64-bits on OpenVMS x86 but only 32-bits on
OpenVMS Itanium. You can use the command line option '-pointer-size' for
CLANG and /POINTER_SIZE qualifier for CXX to change the default size of pointers.
Below there is a detailed description.

The compiler does not automatically upcase external names like all
other OpenVMS compilers. There is a '-names' command line option for CLANG
and /NAMES qualifier for CXX and their default is as_is.

The compiler does not automatically truncate external names longer than 31
characters. External names can be of any length. There are symbol length
limits in the LIBRARIAN and in LINKER options files but in general the LINKER
doesn't care about symbol lengths. The /NAMES=TRUNCATED option can be used
to revert to the IA64 C++ behavior.

1.4 Known Issues

 - long double
 The long double data type is not yet fully supported.

 - No listing file generation

 - No machine code listing file generation. You can create something
 similar with ANALYZE/OBJECT/DISASSEMBLE

 - Still have some problems with 32-bit pointers. In some test-cases it causes
 an LLVM back-end fatal error. We are now working on this problem.

Copyright 2022-2023 VMS Software Inc. 4 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

 - The TRY/CATCH statement may not work correctly on V9.2 systems. We strongly
 encourage that you install "V9.2 update 2".

 - The builtin function lib$establish() is not implemented in clang

 - Calling 'std::cout.operator<<' within global objects constructors brings
 to “%SYSTEM-F-ACCVIO” when linked with static libraries cxx_static.olb
 and cxxabi_static.olb

 - Don’t support the global new/delete operators overrides at this moment.

 - Comma-separated list of source files is not supported by CXX, meaning you can't compile
 multiple files at once.

 1.4.1 Using the Clang command line

 - Clang is sensitive to input file extensions. Clang is both a C and a C++ compiler.
 If you compile a file with an “.c” extension, clang enters “C mode”.
 If you compile with a “.cpp” (or “.cxx”) it will enter “C++ mode”.
 In C-mode C++ features and libs (even STL) are not available.
 But there is "-x" CL option which can force clang to swith to specified
 language mode.

 $ clang -x c++ a.c
 This will compile a.c as C++ code.

 - The command line options are also case-sensitive. But you can meet this kind of
 problem:

 $ clang except.cpp -Wall -I disk2:[000000]
 clang: error: unknown argument '-wall'; did you mean '-Wall'?
 clang: error: unknown argument: '-i'

 The issue here is that DCL with traditional parsing will upcase all the arguments
 and then the CRTL in an attempt to be "nice" will downcase all the arguments.
 You can prevent DCL from upcasing by using double-quotes on the "-Wall" and "-I"
 command line options.
 Alternatively, you can prevent DCL from upcasing and the CRTL from downcasing with
 these definitions (you can put them in your login.com):

 $ set process /parse=extended
 $ define/nolog DECC$ARGV_PARSE_STYLE ENABLE
 $ define/nolog DECC$EFS_CASE_PRESERVE ENABLE
 $ define/nolog DECC$EFS_CHARSET ENABLE

 - Clang accepts multiple source files in one command line. This line is ok:

 $ clang a.cpp b.cpp

1.5 Supported and Not Supported DCL Qualifiers

The following table shows the current set of supported DCL qualifiers.
Support for the remaining qualifiers will be added in a future release.

 --
 | Qualifier | Ignored | Supported |
 --
 | /VERSION | - | + |
 --
 | /CLANG | - | + |
 --

Copyright 2022-2023 VMS Software Inc. 5 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

 | /COMMENTS | - | + |
 --
 | /DEFINE | - | + |
 --
 | /DEBUG | - | + |
 --
 | /ERROR_LIMIT | - | + |
 --
 | /EXCEPTIONS | - | + |
 --
 | /FIRST_INCLUDE | - | + |
 --
 | /INCLUDE_DIRECTORY | - | + |
 --
 | /LIBRARY | - | + |
 --
 | /L_DOUBLE_SIZE | - | + |
 --
 | /MEMBER_ALIGNMENT | - | + |
 --
 | /NAMES | - | + |
 --
 | /OBJECT | - | + |
 --
 | /OPTIMIZE | - | + |
 --
 | /POINTER_SIZE | - | + |
 --
 | /PREPROCESS_ONLY | - | + |
 --
 | /RTTI | - | + |
 --
 | /STANDARD | - | + |
 --
 | /UNDEFINE | - | + |
 --
 | /WARNINGS | - | + |
 --
 | /NESTED_INCLUDE_DIRECTORY | - | + |
 --
 | /VERBOSE | - | + |
 --
 | /BREAKPOINTS | + | - |
 --
 | /GEMDEBUG | + | - |
 --
 | /DUMPS | + | - |
 --
 | /SWITCHES | + | - |
 --
 | /TRACEPOINTS | + | - |
 --
 | /ANSI_ALIAS | + | - |
 --
 | /ARCHITECHTURE | + | - |
 --
 | /ASSUME | + | - |
 --
 | /BE_DUMPS | + | - |
 --
 | /CHECK | + | - |
 --

Copyright 2022-2023 VMS Software Inc. 6 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

 | /DIAGNOSTICS | + | - |
 --
 | /FLOAT | + | - |
 --
 | /G_FLOAT | + | - |
 --
 | /IMPLICIT_INCLUDE | + | - |
 --
 | /ENDIAN | + | - |
 --
 | /EXPORT_SYMBOLS | + | - |
 --
 | /EXTERN_MODEL | + | - |
 --
 | /GRANULARITY | + | - |
 --
 | /IEEE_MODE | + | - |
 --
 | /INSTRUCTION_SET | + | - |
 --
 | /LIST | + | - |
 --
 | /LINE_DIRECTIVE | + | - |
 --
 | /LOOKUP | + | - |
 --
 | /MACHINE_CODE | + | - |
 --
 | /MAIN | + | - |
 --
 | /MMS_DEPENDENCIES | + | - |
 --
 | /OS_VERSION | + | - |
 --
 | /PENDING_INSTANTIATIONS | + | - |
 --
 | /PREFIX_LIBRARY_ENTRIES | + | - |
 --
 | /PSECT_MODEL | + | - |
 --
 | /PURE_CNAME | + | - |
 --
 | /USING_STD | + | - |
 --
 | /DISTINGUISH_NESTED_ENUMS | + | - |
 --
 | /ALTERNATIV_TOKENS | + | - |
 --
 | /QUIET | + | - |
 --
 | /REPOSITORY | + | - |
 --
 | /REENTRANCY | + | - |
 --
 | /ROUNDING_MODE | + | - |
 --
 | /SHARE_GLOBALS | + | - |
 --
 | /MODEL | + | - |
 --
 | /STACK_CHECK | + | - |
 --

Copyright 2022-2023 VMS Software Inc. 7 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

 | /SHOW | + | - |
 --
 | /TEMPLATE_DEFINE | + | - |
 --
 | /UNSIGNED_CHAR | + | - |
 --
 | /XREF | + | - |
 --
 | /FE_DUMP | + | - |
 --
 | /BOTH_CASE | + | - |
 --

1.6 Using Clang Command Options from DCL Command Line

We have addded a new qualifier that allows you to pass clang
command line options when there is no equivalent DCL qualifier.

 /CLANG
 This qualifier takes Clang options and passes them the Clang driver.
 It's important to specify them in double quotes and separately.
 So, instead of

 CXX /CLANG=(-Wall, "-D__macro1 -D__MACRO2") foo.cxx

 specify

 CXX /CLANG=("-Wall", "-D__macro1", "-D__MACRO2") foo.cxx

1.7 Mapping Clang Command Options to DCL Command Options

This sections shows Clang options that are similar to CXX DCL qualifiers.

 /DEFINE
 -D flag, so /DEFINE=TRUE becomes -DTRUE which results to "#define TRUE 1".

 /INCLUDE_DIRECTORY
 -I <directory> - add directory to include search path.
 Also the compiler is extended to support files lookup at predefined logicals
 locations.
 Example:

 // DISK:[SOURCES]INC.CPP
 #include <SYS/INC.HPP>
 int main()
 {
 f();
 }

 // DISK:[HEADERS]INC.HPP
 void f() {};

 To compile INC.CPP, it's enough to define respective SYS logical as
 $ DEFINE SYS DISK:[HEADERS]

 And then just compile INC.CPP
 $ SET DEF DISK:[SOURCES]
 $ CXX INC.CPP

 Also supported the CXX$SYSTEM_INCLUDE, CXX$LIBRARY_INCLUDE and CXX$USER_INCLUDE logical names.
 If some of them are defined then the compiler will do header search also in the directories
 mentioned by the logicals in the same order as placed above.

Copyright 2022-2023 VMS Software Inc. 8 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

 Please note that that CXX$USER_INCLUDE will also impact angle-bracket include directives,
 that is NOT the same behavior as in IA64 CXX. Also the /ASSUME qualifier is not supported yet.

 /POINTER_SIZE, /NOPOINTER_SIZE
 -no-pointer-size
 * Disables processing of '#pragma pointer_size'
 * Predefines the preprocessor macro __INITIAL_POINTER_SIZE to 0
 * THE INITIAL DEFAULT POINTER SIZE IS 64-bit
 (On Alpha and Itanium, /NOPOINTER_SIZE directs the compiler
 to assume that all pointers are 32-bit pointers)

 -pointer-size={long|short|64|32|argv64}
 * "argv64" means:
 - The main argument argv will be an array of 64-bit pointers. The default
 is an array of 32-bit pointers
 - Enables processing of '#pragma pointer_size'
 - Sets the initial default pointer size to 64-bit for translation unit
 - Predefines the preprocessor macro __INITIAL_POINTER_SIZE to 64
 * "long" or "64" means:
 - Enables processing of '#pragma pointer_size'
 - Sets the initial default pointer size to 64-bit for translation unit
 - Predefines the preprocessor macro __INITIAL_POINTER_SIZE to 64
 * "short" or "32" means:
 - Enables processing of '#pragma pointer_size'
 - Sets the initial default pointer size to 32-bit for translation unit
 - Predefines the preprocessor macro __INITIAL_POINTER_SIZE to 32

 The default is "-no-pointer-size" option.

 /NAMES=(UPPERCASE,AS_IS)
 -names={uppercase|as_is} option
 This option controls the conversion of external symbols to the case
 specified. Two possible options are "uppercase" and "as_is".

 * "uppercase" - uppercases all the external symbols in translation unit.
 * "as_is" - leaves them as they are. This is default.

 /NAMES=(TRUNCATED,SHORTENDED)
 -names2={truncated|shortened} option
 This option controls whether or not external names greater than
 31 characers get truncated or shortened.
 Two possible options are "truncated" and "shortened".

 * "truncated" - Truncates long external names to first 31 characters.
 * "shortened" - shortens long external names

 A shortened name consists of the first 23 characters of the name
 followed by a 7-character Cyclic Redundancy Check (CRC) computed
 by looking at the full name, and then a "$".

 By default, external names can be of any length. Itanium C++ defaults
 to /NAMES=TRUNCATED.

 /[NO]MEMBER_ALIGNMENT
 -[no-]member-alignment
 Clang is extended to support the -[no-]member-alignment command-line option
 Directs the compiler to naturally align data structure members. This means that data structure
 members are aligned on the next boundary appropriate to the type of the member, rather than on
 the next byte. For instance, a long variable member is aligned on the next longword boundary; a
 short variable member is aligned on the next word boundary.
 Any use of the #pragma member_alignment or #pragma nomember_alignment
 directives within the source code overrides the setting established by this qualifier.

Copyright 2022-2023 VMS Software Inc. 9 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

 Specifying -no-member-alignment causes data structure members to be byte-aligned (with
 the exception of bit-field members)

 /PENDING_INSTANTIATIONS
 -ftemplate-depth=n, set the maximum instantiation depth for
 template classes to n.

 /EXTERN_MODEL
 This qualifier is not supported by the compiler but it is
 planned for future releases to support respective pragma.

 /LIBRARY
 -text-library=<TEXT_LIBRARY_PATH>
 Clang's option to add text library to include search path.

 /L_DOUBLE_SIZE

 /L_DOUBLE_SIZE
 /L_DOUBLE_SIZE=option
 /L_DOUBLE_SIZE=128 (D)
 Determines how the compiler interprets the long double type. The qualifier options are 64 and 128.

 /L_DOUBLE_SIZE for the Clang is respective to:
 -mlong-double-[128,64,80] 80 is supported by Clang, but OpenVMS does not supporting 80 bit
 long double size.

 /STANDARD
 /STANDARD=(option)
 /STANDARD=RELAXED (D)
 Following new keywords are added to explicitly specify C++ standards.
 CXX98, GNU98, CXX03, GNU03, CXX11, GNU11, CXX14, GNU14, CXX17, GNU17, CXX20, GNU20

 Example:
 /STANDARD=CXX03 is translated to --std=c++03
 /STANDARD=GNU03 is translated to --std=gnu++03

 The value LATEST is equivalent to STRICT_ANSI which is equivalent to CXX98

 The default standard for CXX is set to GNU98

 The equivalent CLANG option is:
 -std=<value> - language standard to compile for.

 /ARCHITECTURE

 /ARCHITECTURE=option
 Determines the processor instruction set to be
 used by the compiler.

 Select one of the /ARCHITECTURE qualifier options shown in the
 following table.

 X86=option Similar to Clang's -march option.
 For example
 $ cxx /arch=x86="skylake" hw.cxx

 GENERIC Ignored on X86.

 HOST Ignored on X86.

 ITANIUM2 Ignored on X86.

Copyright 2022-2023 VMS Software Inc. 10 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

 EV4 Ignored on X86.

 EV5 Ignored on X86.

 EV56 Ignored on X86.

 PCA56 Ignored on X86.

 EV6 Ignored on X86.

 EV68 Ignored on X86.

 EV7 Ignored on X86.

 /NESTED_INCLUDE_DIRECTORY

 /NESTED_INCLUDE_DIRECTORY
 /NESTED_INCLUDE_DIRECTORY[=option]
 /NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE (D)

 Controls the first step in the search algorithm the compiler
 uses when looking for files included using the quoted form of
 the #include preprocessing directive: #include "file-spec" The
 /NESTED_INCLUDE_DIRECTORY qualifier has the following options:

 Option Usage

 PRIMARY_ Directs the compiler to search the default file type
 FILE for headers using the context of the primary source
 file. This means that only the file type (".H" or ".")
 is used for the default file-spec but, in addition,
 the chain of "related file-specs" used to maintain
 the sticky defaults for processing the next top-level
 source file is applied when searching for the include
 file. This is not supported for X86.
 INCLUDE_ Directs the compiler to search the directory
 FILE containing the file in which the #include directive
 itself occurred. The meaning of "directory containing"
 is: the RMS "resultant string" obtained when the file
 in which the #include occurred was opened, except that
 the filename and subsequent components are replaced
 by the default file type for headers (".H", or just
 "." if /ASSUME=NOHEADER_TYPE_DEFAULT is in effect,
 /ASSUME is not supported for X86).
 The "resultant string" will not have translated any
 concealed device logical.
 NONE Directs the compiler to skip the first step of
 processing #include "file.h" directives. The compiler
 starts its search for the include file in the
 /INCLUDE_DIRECTORY directories.

 For more information on the search order for included files, see
 the /INCLUDE_DIRECTORY qualifier.

 /FIRST_INCLUDE
 -include <file> - include file before parsing.

 /UNDEFINE
 -U <macro> - undefine macro <macro>.

 /LINE_DIRECTIVES
 -P - disable linemarker output in preprocessing mode.

Copyright 2022-2023 VMS Software Inc. 11 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

 /UNSIGNED_CHAR for the compiler is respective to:
 -fno-signed-char - char is unsigned.
 -fsigned-char - char is signed.

 /COMMENTS
 -C - include comments in preprocessed output.

 /ERROR_LIMIT

 /ERROR_LIMIT
 /ERROR_LIMIT[=number]
 /NOERROR_LIMIT Limits the number of error-level diagnostic messages that are
 acceptable during program compilation. Compilation terminates
 when the limit (number) is exceeded. /NOERROR_LIMIT specifies
 that there is no limit on error messages. The default is /ERROR_LIMIT=20,
 which specifies that compilation terminates after issuing 20 error messages.

 -ferror-limit=n - stop emitting diagnostics after n errors have been produced.

 /OBJECT
 -o <file> - write output to the file. Default object file has .obj extension.

 /PREPROCESS_ONLY
 -E - only run the preprocessor.

 /RTTI
 /RTTI (D)
 /NORTTI
 Enables or disables support for RTTI (runtime type
 identification) features: dynamic_cast and typeid. Disabling
 runtime type identification can also save space in your object
 file because static information to describe polymorphic C++
 types is not generated. The default is to enable runtime type
 information features and generate static information in the
 object file. The /RTTI qualifier defines the macro __RTTI.
 Note that specifying /NORTTI does not disable exception handling.

 Clang has similar options
 -fno-rtti - disable generation of rtti information.
 -frtti - enable generation of rtti information(default).

 Clang does not define the __RTTI macro.

 /WARNINGS

 /WARNINGS
 /WARNINGS[=(option[,...])]
 /WARNINGS (D)
 /NOWARNINGS

 Controls the issuance of compiler diagnostic messages and lets
 you modify the severity of messages.

 The default qualifier, /WARNINGS, outputs all enabled warning.
 The /NOWARNINGS qualifier suppresses warning messages.

 The message-list in the following table of options can be any one
 of the following:

 o A single message identifier in double quotes (within parentheses, or not).

Copyright 2022-2023 VMS Software Inc. 12 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

 o A comma-separated list of message identifiers in double quotes,
 enclosed in parentheses.

 o The keyword "all".

 The options are processed and take effect in the following order:

 NOWARNINGS Suppresses warnings.
 Similar to Clang's -w option.

 NOINFORMATIONALS Has no effect.

 ENABLE=message-list Enables issuance of the specified
 messages. Can be used to enable specific
 messages that normally would not be issued
 when messages disabled with /WARNINGS=DISABLE.
 Specify "all" to enable all warnings.

 Similar to Clang's -W<warning> option.
 DISABLE=message-list Disables issuance of the specified
 messages. Specify "all" to suppress all
 warnings.
 Similar to Clang's -Wno-<warning> option.

 INFORMATIONALS=message-Has no effect.
 list

 WARNINGS=message- Don't error out on the specified warnings.
 list
 Similar to Clang's -Wno-error=<warning> option.

 [NO]ANSI_ERRORS Has no effect.
 [NO]TAGS Has no effect

 ERRORS=message-list Sets the severity of the specified
 messages to Error.
 Similar to Clang's -Werror=<warning> option.

 IMPORTANT NOTE
 CXX uses Clang message IDs. For example, if Clang issues a warning like

 "warning: non-void function does not return a value [-Wreturn-type]"

 The ID of message is "return-type".

 All message IDs should be given to CXX as they are in double quotes to preserve
 the case. This is true for the keyword "all" as well.

 There is a list of warnings in clang that are turned off by default and are
 enabled with their specific ID or with the keyword "all".
 The VMS-specific warning "cast from long pointer to short pointer will lose
 data" is off by default. It can be enabled with the ID "may-lose-data" or
 with "all".

 /EXCEPTIONS
 -fexceptions - enable support for exception handling.
 -fno-exceptions - disable support for exception handling.

 /OPTIMIZE
 -O0, -O1, -O2, -O3, -Ofast, -Os, -Oz, -Og, -O, -O4

 Specify which optimization level to use:

Copyright 2022-2023 VMS Software Inc. 13 All Rights Reserved

VMS Software Inc. 6 Liberty Square - PMB#294 Boston, MA. 02109-5800

 `-O0` Means "no optimization": this level compiles the fastest and
 generates the most debuggable code.

 `-O1` Somewhere between `-O0` and `-O2`.

 `-O2` Moderate level of optimization which enables most
 optimizations.

 `-O3` Like `-O2`, except that it enables optimizations that
 take longer to perform or that may generate larger code (in an attempt to
 make the program run faster).

 `-Ofast` Enables all the optimizations from `-O3` along
 with other aggressive optimizations that may violate strict compliance with
 language standards.

 `-Os` Like `-O2` with extra optimizations to reduce code
 size.

 `-Oz` Like `-Os` (and thus `-O2`), but reduces code
 size further.

 `-Og` Like `-O1`. In future versions, this option might
 disable different optimizations in order to improve debuggability.

 `-O` Equivalent to `-O2`.

 `-O4` and higher

 Currently equivalent to `-O3`

 /VERBOSE
 With this qualifier the driver first prints out the fully generated
 command line which is going to Clang, and then runs the compiler

1.8 Threads and variable sharing
 OpenVMS does not currently support thread_local/__thread/_Thread_local
 declaration specifiers. As alternative use POSIX API, functions
 pthread_key_create, pthread_setspecific, pthread_getspecific,
 pthread_key_delete might be a good place to start.

1.9 See also:
 In the following links is the full docuentation about Clang compiler:
 https://releases.llvm.org/10.0.0/tools/clang/docs/index.html
 https://releases.llvm.org/10.0.0/tools/clang/docs/ClangCommandLineReference.html

Copyright 2022-2023 VMS Software Inc. 14 All Rights Reserved

