

 VSI Pascal X6.3-139 for OpenVMS x86-64 Systems

 Release Notes

 17 August 2023

 Copyright 2023 Hewlett-Packard Development Company, L.P.

 Copyright 2023 VMS Software, Inc.

 HP CONFIDENTIAL. This software is confidential proprietary

 software licensed by Hewlett-Packard Development Company,

 L.P., and is not authorized to be used, duplicated or

 disclosed to anyone without the prior written permission of

 HP.

 VMS SOFTWARE, INC. CONFIDENTIAL. This software is

 confidential proprietary software licensed by VMS Software,

 Inc., and is not authorized to be used, duplicated or

 disclosed to anyone without the prior written permission of

 VMS Software, Inc.

 This document contains information about VSI Pascal X6.3-139

 including new features, differences between X6.3-139 and

 previous versions, corrections included, and other topics.

 This file is of interest to both system management and

 application programmers.

 CONTENTS

CHAPTER 1 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE

 NOTES

 1.1 Overview Of VSI Pascal 1-1

 1.2 VSI Pascal For OpenVMS X86-64 Systems Field Test . 1-1

 1.3 New Features In VSI Pascal 1-2

 1.4 Debug Support For Schema Types 1-7

 1.5 Limited Support For 64-bit Pointer Types 1-8

 1.5.1 Language Features Not Supported With 64-bit

 Pointers . 1-8

 1.5.2 Using 64-bit Pointers With System Definition

 Files . 1-10

 1.6 Creating Files With RMS "Undefined" Record Types 1-12

 1.7 Using The POS Attribute With Natural Alignment . 1-12

 1.8 Using $FILESCAN With VSI Pascal 1-12

 1.9 Using Condition Handlers That Return SS$_CONTINUE 1-13

 1.10 Using Asynchronous RMS I/O With Pascal 1-14

 1.11 Known Problems And Restrictions 1-15

 1.12 STARLET Definition Files 1-19

 1.13 Compiling For Optimal Performance 1-20

 1.14 Alignment Faults 1-20

 1.14.1 Understanding Alignment Faults 1-20

 1.14.2 What Does The Compiler Know? 1-21

 1.14.3 What Does The Compiler Assume? 1-22

 1.14.4 Correcting Alignment Faults 1-23

 1.14.5 Locating Alignment Faults 1-24

 1.14.5.1 MONITOR ALIGN (OpenVMS I64 Only) 1-24

 1.14.5.2 ANALYZE/SYSTEM FLT Extension (OpenVMS I64 Only) 1-25

 1.14.5.3 PCA SET UNALIGNED (OpenVMS I64 Only) 1-26

 1.14.5.4 DEBUG SET BREAK /UNALIGNED (OpenVMS Alpha And

 OpenVMS I64 Only) 1-26

 1.14.5.5 Alignment Fault System Services (OpenVMS Alpha

 And OpenVMS I64 Only) 1-27

 1.14.6 Why /USAGE=PERFORMANCE Does Not Help Finding

 Alignment Faults 1-28

 1.15 Problems Corrected Since Last Release Of VSI

 Pascal . 1-29

 2

 CHAPTER 1

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

1.1 Overview Of VSI Pascal

This is the first field test release of the VSI Pascal compiler for

OpenVMS x86-64 systems. It is the same frontend as used on othe

OpenVMS platforms to ensure maxiumum language compatibility. It uses

LLVM as the code-generator.

The VSI Pascal compiler requires OpenVMS V9.2-1 or later.

1.2 VSI Pascal For OpenVMS X86-64 Systems Field Test

The following features of VSI Pascal are currently not available on

OpenVMS x86-64 systems.

 - The QUADRUPLE is not supported and will result in internal

 compiler errors. Unlike C and Fortran, there is no command

 line qualifier to downgrade QUADRUPLE to DOUBLE. We expect

 to add QUADRUPLE support in an upcoming release and well as a

 command line option to downgrade QUADRUPLEs to DOUBLEs

 - The /MACHINE_CODE qualifier is ignored. We are still working

 on getting the generated code listing out of LLVM. In the

 meantime, you can do ANALYZE/OBJECT/DISASSEMBLE and append

 the output to the compiler listing file

 - Non-local GOTOs do not currently work

 - Most forms of run-time checking enabled with /CHECK do not

 detect the errors.

 1-1

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

1.3 New Features In VSI Pascal

The VSI Pascal compiler contains the following new features not listed

in the documentation based on customer requests. Unless specified,

the following new features have been added to all VSI Pascal OpenVMS

targets.

 1. The /USAGE=64BIT_TO_DESCR keyword as been added to disable

 the checking of passing 64-bit pointer expressions to

 parameters passed by 32-bit descriptors. Normally the

 compiler will flag that as an error but certain P2 64-bit

 addresses can be passed in the descriptor if the address is

 treated as an unsigned integer. This new option will

 suppress the check.

 2. The /CDD_QUAD_TYPE=keyword DCL qualifier has been added to

 control how the %DICTIONARY directive translates quadword and

 octaword sized items from the CDD Dictionary.

 The keywords available are:

 1. EMPTY_RECORD - The compiler will translate quadword and

 octaword sized items (including both CDD date/time

 datatypes) into "[BYTE(n)] RECORD END" where "n" is 8 or

 16. This syntax reserves the appropriate amount of

 memory for the item, but does not provide any direct

 method to fetch or store the item. Programs must use

 explicit typecasts to properly manipulate the empty

 records. This is the default and is how all prior

 compilers have translated quadword and octaword sized

 items.

 2. INTEGER64 - The compiler will translate signed quadwords

 (including both CDD date/time datatypes) into INTEGER64

 and unsigned quadwords into UNSIGNED64. Octaword values

 are still translated into empty records as described

 above.

 3. RDML_QUAD_TYPE - The compiler will translate quadword

 sized items (including both CDD date/time datatypes) into

 "[BYTE(8),UNSAFE] RECORD L0:UNSIGNED; L1:INTEGER END"

 and octaword sized items into

 "[BYTE(16),UNSAFE] RECORD L0,L1,L2:UNSIGNED; L3:INTEGER END".

 This matches the behavior of the RDML preprocessor.

 3. The /IDENT=ident-or-string DCL qualifier has been added to

 specify a module-ident from the command line. This qualifier

 is identical to the [IDENT(quoted-string)] module-level

 attribute already available in the language. An explicit

 [IDENT(quoted-string)] attribute in the source file will

 override the /IDENT DCL qualifier. /IDENT=ABC will yield an

 1-2

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 ident string of ABC. /IDENT="abc" will yield an ident string

 of abc.

 4. The /PEN_CHECKING_STYLE=keyword DCL qualifier has been added

 to specify the desired environment file checking method from

 the command line. This qualifier is identical to the

 [PEN_CHECKING_STYLE(keyword)] module-level attribute already

 available in the language. It accepts the same keywords as

 the attribute: COMPILATION_TIME, IDENT_STRING, and NONE.

 The default is COMPILATION_TIME. An explicit

 [PEN_CHECKING_STYLE(keyword)] attribute in the source file

 will override the /PEN_CHECKING_STYLE DCL qualifier.

 5. The /ASSUME=BYTE_ALIGNED_POINTERS keyword has been added to

 specify that the compiler should assume that all pointers

 point to memory that is only aligned on byte boundaries.

 Normally, the compiler assumes that pointer variables are

 initialized by a call to the NEW predeclared routine. The

 memory returned by NEW is at least quadword aligned. The

 compiler can take advantage of that alignment to generate

 better code. However, if the program initializes the

 pointers by some other means such as IADDRESS or typecasting

 with values that are not quadword aligned, then the generated

 code may produce alignment faults. While the alignment

 faults are silently handled by OpenVMS, the resulting

 performance loss might be significant.

 By specifying BYTE_ALIGNED_POINTERS, the compiler will

 generate slightly slower code to fetch the value. However,

 compared to the overhead of correcting the alignment faults,

 this additional overhead is very small.

 The preferred solution is to ensure that all pointers contain

 quadword aligned addresses and use the default of

 NOBYTE_ALIGNED_POINTERS.

 6. The IN and NOT IN operators have been enhanced to accept

 string arguments to determine if the string on the left hand

 side of the operator is IN, or NOT IN the string on the right

 hand side, respectively. This enhancement can be used to

 make programs easier to understand.

 The

 string1 IN string2

 expression is identical to

 INDEX(string2,string1) <> 0

 and the

 1-3

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 string1 NOT IN string2

 expression is identical to

 INDEX(string2,string1) = 0

 7. The SUBSTR predeclared function has been enhanced to allow

 the third operand, the substring size, to be optional. When

 omitted, the SUBSTR function will return the string that

 starts at the start index and continues to the end of the

 string.

 The

 SUBSTR(string,start_index)

 is identical to

 SUBSTR(string,start_index,length(string)-string_index+1)

 8. The %FLOAT directive has been added to determine the floating

 point default. The %FLOAT directive expands to either

 "VAX_FLOAT" or "IEEE_FLOAT" depending on the setting of the

 /FLOAT DCL qualifier or the [FLOAT] module-level attribute.

 9. Several directives have been added to create floating

 literals of a specific type regardless of the current default

 floating type of the module.

 - %F_FLOAT - produce a VAX F_floating literal

 - %D_FLOAT - produce a VAX D_floating literal

 - %G_FLOAT - produce a VAX G_floating literal

 - %S_FLOAT - produce an IEEE S_floating literal

 - %T_FLOAT - produce an IEEE T_floating literal

 The syntax is:

 %x_FLOAT floating-point-literal

 where "x" is 'F','D','G','S', or 'T'.

 VSI Pascal has had the ability to declare and use both VAX

 and IEEE floating point types in the same module using the

 predeclared types, F_FLOAT, D_FLOAT, G_FLOAT, S_FLOAT, and

 T_FLOAT. However, floating point literals were always parsed

 1-4

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 based on the default floating type in the module. With the

 addition of the new directives, you can now write code like:

 lib$wait(%f_float 1.0);

 which will pass the correct floating literal to LIB$WAIT

 regardless of the default floating type of the module.

 10. The BIN, OCT, HEX, DEC, and UDEC builtins are now supported

 in compile-time expressions. However, while the BIN, OCT,

 and HEX builtins accept expressions of any time when used in

 run-time expressions, they only support ordinal types when

 used in compile-time expressions.

 11. Two new statements named SELECT and SELECTONE have been

 added. Patterned after the BLISS statements of the same

 name, the SELECT and SELECTONE statements look much like the

 CASE statement except for one very powerful feature. Namely,

 the labels of a SELECT or SELECTONE statement can be run-time

 expressions as opposed to the CASE statement which only

 allows constant expressions.

 The syntax for the SELECT statement is:

 SELECT select-selector OF

 [[{{select-label-list},...: statement};...]]

 [[[[OTHERWISE {statement};...]]

 [[ALWAYS {statement};...]]]]

 [[;]]

 END

 where 'select-label-list' is

 expression [[.. expression]]

 The expressions in the 'select-label-list' can be full

 run-time expressions.

 When two expressions are provided as a lower and upper bound,

 they must be of the same ordinal type. There is no check to

 ensure that the lower bound expression is less than or equal

 to the upper bound expression. If that occurs then there are

 simply no values of the select-selector that can be in the

 range.

 The SELECT statement checks to see if the value of the

 select-selector is contained in the select-label-list. If

 so, then the corresponding statement is executed. The

 select-label-lists are checked in the same lexical order that

 they appear in the source file. The same value can appear in

 more than one select-label-list.

 1-5

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 The optional OTHERWISE and ALWAYS clauses can appear in

 either order. The ALWAYS clause is always executed. The

 OTHERWISE clause is executed only if none of the prior

 statements (except for an optional ALWAYS statement) have

 been executed.

 The syntax for the SELECTONE statement is almost identical

 but does not provide for an ALWAYS clause.

 SELECTONE select-selector OF

 [[{{select-label-list},...: statement};...]]

 [[OTHERWISE {statement};...]]

 [[;]]

 END

 Unlike the SELECT statement, the SELECTONE statement stops

 processing after it executes the first statement that

 corresponds to a select-label-list that contains the

 select-selector value.

 While the SELECT/SELECTONE statements can be used similar to

 the CASE statement. For example,

 SELECT expression OF

 1: WRITELN('ONE');

 2: WRITELN('TWO');

 OTHERWISE WRITELN('not ONE or TWO')

 END

 a more subtle (and powerful) form uses the Boolean constant

 'TRUE' as the select-selector. For example,

 SELECTONE True OF

 expression < 10: WRITELN('Value is small');

 expression < 100: WRITELN('Value is medium');

 expression < 1000: WRITELN('Value is big');

 OTHERWISE WRITELN('Value is too big');

 END

 SELECTONE True OF

 expression = "AAA": writeln('String is AAA');

 expression = "BBB": writeln('String is BBB');

 expression = "CCC": writeln('String is CCC');

 OTHERWISE writeln('unknown string');

 END

 FOR i := 1 TO 10 DO

 SELECT True OF

 ODD(i): WRITELN('value ',i:1,' is odd');

 (i MOD 3) = 0:

 WRITELN('value ',i:1,' is also a multiple of 3');

 END;

 1-6

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

1.4 Debug Support For Schema Types

VSI Pascal has partial debugging support for schema types. When

/DEBUG is used along with schema types, the compiler generates helper

routines that will be used by the debugger to compute various pieces

of run-time information it needs to examine or deposit into schematic

variables. These routines have names that include "%BOUND",

"%STRIDE", "%SIZE", and "%OFFSET" strings in their names. They should

not impact the user program other than the fact that these routines

are included in the generated code.

We strongly encourage you to use /NOOPTIMIZE along with /DEBUG when

debugging code that contains schema types. We have tested debugging

with optmizations enabled, but the impact of optimization techiques

make debugging difficult.

This support for debugging schema types exposes several bugs in the

existing debugger especially on OpenVMS I64 and OpenVMS x86-64. If

you try to debug schema types with the existing debugger, you may

encounter wrong answers or debug errors. We

For example,

program test;

type

 subr(l,u:integer) = l..u;

var

 a : [volatile] integer value 3;

 b : [volatile] integer value 3;

 r : record

 f5_1 : array [subr(a,b)] of integer;

 case f5_tag : integer of

 1 : (f5_case_1 : integer);

 2 : (f5_case_2 : boolean);

 end; { case }

begin

r := zero;

r.f5_tag := 2;

end.

You can examine variable R as an entire variable, but if you ask for

R.F5_CASE_1 or R.F5_CASE_2, the debugger tries to examine the wrong

virtual address.

For example,

DBG> ex r

TEST\R

 F5_1

 [3]: 0

 1-7

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 F5_TAG: 2

 Variant Record with Tag Value: 2

 F5_CASE_2: False

DBG> ex r.f5_case_1

%DEBUG-E-NOACCESSR, no read access to address 000000007F46E0FC

DBG> ex r.f5_case_2

%DEBUG-E-NOACCESSR, no read access to address 000000007F46E0FC

The debug engineering team is aware of this problem.

1.5 Limited Support For 64-bit Pointer Types

VSI Pascal has been enhanced to provide support for 64-bit pointers.

By using the [QUAD] attribute on pointer types, the compiler will

create and use a 64-bit pointer instead of a 32-bit pointer. The NEW

and DISPOSE procedures have been enhanced to work with 64-bit

pointers.

1.5.1 Language Features Not Supported With 64-bit Pointers

Several language features are not supported with 64-bit pointers.

These features are:

 o Base types of 64-bit pointers cannot contain file types.

 o The READ, READV, and WRITEV builtin routines cannot read or

 write into variables accessed via 64-bit pointers. For

 example, the following code fragment will be rejected by the

 compiler

 var quad_ptr : [quad] ^integer;

 begin

 new(quad_ptr);

 read(quad_ptr^);

 end

 you can work-around this by using a temporary variable, as

 in,

 var quad_ptr : [quad] ^integer;

 tmp : integer;

 begin

 new(quad_ptr);

 read(tmp);

 quad_ptr^ := tmp;

 end

 1-8

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 o Since VSI Pascal only understands 32-bit descriptors as

 defined by the OpenVMS Calling Standard, any VSI Pascal

 construct that relies on descriptors is not supported for

 variables accessed via 64-bit pointers. The features

 rejected for 64-bit pointers are:

 - The use of %DESCR or %STDESCR on actual parameter values

 accessed via 64-bit pointers. For example, you cannot do

 type

 s32 = packed array [1..32] of char;

 var

 qp : [quad] ^s;

 begin

 new(qp);

 some_routine(%stdescr qp^);

 end;

 - Passing variables accessed with 64-bit pointers to formal

 parameters declared with %DESCR OR %STDESCR foreign

 mechanism specifiers.

 - Passing variables accessed with 64-bit pointers to

 conformant array or conformant varying parameters.

 - Passing variables accessed with 64-bit pointers to STRING

 parameters.

 - At run-time, the compiler will generate incorrect code

 when passing a VAR parameter that is accessed via a

 64-bit pointer to a parameter that requires a descriptor.

 The generated code will build the descriptor with the

 lower 32-bits of the 64-bit address. We will add a

 run-time check for this situation in a future release.

 For example,

 type

 s32 = packed array [1..32] of char;

 var

 qp : [quad] ^s32;

 procedure a(p : packed array [l..u:integer] of char);

 begin

 writeln(p);

 end;

 procedure b(var p : s32);

 begin

 a(p); { This will generate a bad descriptor }

 end;

 1-9

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 begin

 new(qp);

 b(qp^);

 end;

1.5.2 Using 64-bit Pointers With System Definition Files

The STARLET Definition files for Pascal have not been enhanced to

reflect the new 64-bit pointer support in the compiler. For routines

that have parameters that are 64-bit pointers, the Pascal definition

will use a record type that is 64-bits in size. The definition files

do not know about either the INTEGER64 datatype or 64-bit pointers.

We will try to improve the definition files in a future release.

However, you can still use these new routines from VSI Pascal.

By using a foreign mechanism specifier (ie, %IMMED, %REF, %STDESCR,

and %DESCR) on an actual parameter, you can override the formal

definition inside of definition files.

For example, here is an example of calling lib$get_vm_64 using %ref to

override the definition from PASCAL$LIB_ROUTINES.PEN. Note, that

starting with Pascal V5.9, the NEW predeclared routine will call

lib$get_vm_64 directly. However, this example is demonstrating how to

override any system parameter definition using 64-bit pointers.

[inherit('sys$library:pascal$lib_routines')]

program p64(input,output);

const

 arr_size = (8192 * 10) div 4; ! Make each array be 10 pages

type

 arr = array [1..arr_size] of integer;

 arrptr = [quad] ^arr;

var

 ptr : arrptr;

 ptrarr : array [1..10] of arrptr;

 i,j,stat : integer;

 sum : integer64;

! PASCAL$LIB_ROUTINES.PAS contains

! the following definitions for LIB$GET_VM_64

!

!type

! $QUAD = [QUAD,UNSAFE] RECORD

 1-10

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

! L0:UNSIGNED; L1:INTEGER; END;

! $UQUAD = [QUAD,UNSAFE] RECORD

! L0,L1:UNSIGNED; END;

! lib$routines$$typ4 = ^$QUAD;

!

![ASYNCHRONOUS] FUNCTION lib$get_vm_64 (

! number_of_bytes : $QUAD;

! VAR base_address : [VOLATILE] lib$routines$$typ4;

! zone_id : $UQUAD := %IMMED 0) : INTEGER; EXTERNAL;

!

! Note that the BASE_ADDRESS parameter is a 64-bit pointer

! that will be returned by LIB$GET_VM_64. The definition

! incorrectly declared it as a pointer to a record that is

! quadword sized.

!

begin

! Allocate memory with lib$get_vm_64. The definition of

! lib$get_vm_64 declares the return address parameter as

! a quadword-sized record since it doesn't have sufficient

! information to generate a INTEGER64 or other type.

!

! Use an explicit '%ref' foreign mechanism specifier to

! override the formal parameter's type definition and pass

! our pointer to lib$get_vm_64.

!

writeln('arr_size = ',arr_size:1);

for i := 1 to 10 do

 begin

 stat := lib$get_vm_64(size(arr), %ref ptrarr[i]);

 if not odd(stat)

 then

 begin

 writeln('Error from lib$get_vm_64: ',hex(stat));

 lib$signal(stat);

 end;

 writeln('ptrarr[',i:1,'] = ',hex(ptrarr[i]));

 end;

! Read/write all the memory locations to get some page faults

!

writeln('Initialize all memory');

for i := 1 to 10 do

 for j := 1 to arr_size do

 ptrarr[i]^[j] := i + j;

sum := 0;

writeln('Add up all memory in reverse direction');

for i := 10 downto 1 do

 for j := arr_size downto 1 do

 1-11

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 sum := sum + ptrarr[i]^[j];

writeln('Sum of array contents = ',sum:1);

end.

1.6 Creating Files With RMS "Undefined" Record Types

On OpenVMS I64 and OpenVMS x86-64, object files are created with the

RMS record type of "undefined" to correctly describe these files as

pure byte stream files. Prior to that, the "undefined" record type

was not commonly seen on OpenVMS systems.

The VSI Pascal OPEN predeclared routine does not have direct support

for "RECORD_TYPE := UNDEFINED". However, you can create a file with

"undefined" record type using a USER_ACTION routine. An example file

(SYS$SYSROOT:[SYSHLP.EXAMPLES.PASCAL]CREATE_UDF_FILE.PAS) has been

included in the VSI Pascal kit that shows how to do it.

1.7 Using The POS Attribute With Natural Alignment

The description of the POS attribute does not describe the interaction

with using the POS attribute with field types whose natural preferred

alignment conflicts with the bit position specified.

The description of the POS attribute will be expanded to include the

additional rule:

 o In an unpacked array, the specified bit position must not

 conflict with the default preferred alignment of the field's

 type.

1.8 Using $FILESCAN With VSI Pascal

The definition of $FILESCAN in STARLET.PAS declares the 1st parameter

as a value parameter accepting a string expression. The system

service returns pointers back into this parameter via the item list

parameter.

When a string variable is passed to this first parameter, the compiler

may make a local copy of the string before calling the system service.

The system service will then return addresses back into this temporary

copy of the string on the stack. As the program executes further,

this stack space is reused and the returned pointers become useless.

 1-12

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

If the actual parameter passed to $FILESCAN is a PACKED ARRAY OF CHAR

variable, then you can workaround this problem by using the %STDESCR

foreign mechanism specifier on the actual parameter. If the actual

parameter is a VARYING OF CHAR or STRING, you will have to build your

own local descriptor referencing the .BODY of the VARYING OF CHAR or

STRING and pass that descriptor to $FILESCAN using the %REF foreign

mechanism specifier.

In both cases, you need to add VOLATILE to the variable being passed

so the compiler knows that the variable must remain active after

$FILESCAN has been called. This is needed since the code will be

accessing pieces of the variable via the returned addresses.

1.9 Using Condition Handlers That Return SS$_CONTINUE

In VSI Pascal, condition handlers can do one of the following things

after doing whatever is appropriate for the error:

 1. Use a non-local GOTO to transfer control to a label in an

 enclosing block.

 2. Return SS$_CONTINUE if the handler wants the error dismissed

 and to continue processing.

 3. Return SS$_RESIGNAL if the handler wants the system to

 continue searching for additional handlers to call.

 4. Call the $UNWIND system service to establish a new point to

 resume execution when the handler returns to the system.

When an exception occurs, the system calls a handler in the Pascal

Run-Time Library that is established by the generated code. This

handler in the RTL in turn calls the user's condition handler that was

established with the ESTABLISH builtin routine.

The RTL's handler contains a check to prevent a user's handler from

returning SS$_CONTINUE for a certain class of Pascal Run-Time Errors

that could cause an infinite loop if execution was to continue at the

point of the error.

There are two situations where this check may cause unexpected

behavior.

The first situation is where the user's handler called $UNWIND and

then returned with SS$_CONTINUE. Since the $UNWIND service was

called, execution won't resume at the point of the error even if

SS$_CONTINUE is returned to the system. However, the RTL's handler

isn't aware that $UNWIND has been called and complains that you cannot

continue for this type of error. The solution is to return

 1-13

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

SS$_RESIGNAL instead of SS$_CONTINUE after calling $UNWIND in the

user's handler.

However, this solution isn't possible if you establish the

LIB$SIG_TO_RET routine with the ESTABLISH builtin routine.

LIB$SIG_TO_RET is a routine that can be used as a condition handler to

convert a signal into a "return to the caller of the routine that

established LIB$SIG_TO_RET". Since LIB$SIG_TO_RET returns SS$_NORMAL

which in turn is the same value as SS$_CONTINUE, the handler in the

Pascal RTL will complain that you cannot continue from this type of

error. The solution for this case is to establish your own handler

with the ESTABLISH builtin routine that calls LIB$SIG_TO_RET and then

returns SS$_RESIGNAL. You cannot establish LIB$SIG_TO_RET directly as

a handler with the ESTABLISH builtin routine.

The second situation where the RTL's check for SS$_CONTINUE from a

user's handler can cause problem in moving code from OpenVMS VAX to

OpenVMS Alpha, OpenVMS I64, or OpenVMS x86-64.

On OpenVMS VAX, only certain run-time errors were not allowed to

return SS$_CONTINUE from a handler. These errors for those associated

with the SUBSTR and PAD builtin routines as well as checking code for

set constructors. On OpenVMS Alpha, OpenVMS I64, and OpenVMS x86-64,

many more run-time errors are not allowed to return SS$_CONTINUE from

a handler. The exact lists of run-time errors which can be continued

and which ones cannot be continued has never been provided. The

compilers may choose to generate different code in the future which

might move an error from one list to the other. We recommend that do

you not return SS$_CONTINUE for any Pascal run-time error that is not

due to a file operation.

1.10 Using Asynchronous RMS I/O With Pascal

The USER_ACTION parameter on OPEN and CLOSE provides access to the

underlying FAB and RAB RMS blocks that are used by the Run-Time

Library for the Pascal FILE variable.

Setting the FAB$V_ASY or RAB$V_ASY flags to enable asynchronous file

or record operations is not supported and should not be done. In

general, the RTL assumes synchronous RMS file operations and is not

prepared to use the $WAIT service when needed. For example, if an

asynchronous write is performed, a subsequent STATUS builtin will

almost certainly not return the status of the 'in flight' I/O

operation. In addition, performing asynchronous operations on

non-sequential files will almost certainly not work as expected.

Since the RTL assumes synchronous operations, it does not use AST

completion routines that would normally be used with asynchronous file

operations.

 1-14

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

If you wish to use asynchronous file RMS file operations, you should

call the RMS services directly.

1.11 Known Problems And Restrictions

Here is a list of language features that are not yet implemented or do

not work as documented in VSI Pascal

 1. UNSIGNED8 and UNSIGNED16 Predeclared Subranges

 The UNSIGNED8 and UNSIGNED16 predeclared subrange types are

 documented as being subranges of UNSIGNED. However, they are

 actually subranges of INTEGER with positive values that

 correspond to an UNSIGNED subrange of the same size. This

 subtle distinction in the definition is almost impossible to

 detect from a program and shouldn't be a problem in the

 general case.

 One visible difference is that expressions involving

 UNSIGNED8 and UNSIGNED16 values are performed with overflow

 detection enabled (just like any INTEGER expression). So if

 you multiply the largest UNSIGNED16 value with itself, the

 operation will produce an overflow where you would not expect

 an overflow. For example,

 VAR A,B : UNSIGNED16 VALUE 65535;

 A := A * B;

 will produce an integer overflow where you would expect the

 rules for unsigned arithmetic to produce the value 1.

 2. Using Discriminated Schema as Formal Discriminant Types

 Extended Pascal allows a discriminated ordinal schema type to

 be subsequently used as the type of a formal schema

 discriminant. For example,

 TYPE SUBR(L,U:INTEGER) = L..U;

 DSUBR = SUBR(expression,expression);

 SCH1(D:DSUBR) = ARRAY [1..D] OF INTEGER;

 SCH2(D:DSUBR) = RECORD

 CASE D OF

 1: (F1:INTEGER);

 2: (F2:CHAR);

 END;

 VSI Pascal does not currently support this construct.

 1-15

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 3. Files with Schema Components

 Extended Pascal allows file components to contain schematic

 items and therefore provide run-time sized file components.

 For example,

 TYPE SUBR(L,U:INTEGER) = L..U;

 FILE_COMP = ARRAY [SUBR(expr,expr)] OF INTEGER;

 VAR F : FILE OF FILE_COMP;

 VSI Pascal does not currently support this feature and

 requires that the component sizes of files be known at

 compile-time.

 4. Using Formal Discriminants Inside Initial State Specifiers

 Extended Pascal allows the formal discriminant to appear in

 an initial state specifier in the schema definition. For

 example,

 TYPE R(D:INTEGER) = RECORD

 F1 : INTEGER VALUE D;

 END;

 A(D:INTEGER) = ARRAY [1..D] OF INTEGER VALUE [OTHERWISE D];

 VSI Pascal does not currently support this feature and

 requires that all initial state values be compile-time

 expressions.

 5. Changing Variants When Selector Is A Discriminant

 If a formal discriminant is used as a variant tag, it is

 illegal to change the variant once the variable has been

 created. For example,

 TYPE R(D:INTEGER) = RECORD

 CASE D OF

 1: (ONE : INTEGER);

 2: (TWO : INTEGER);

 OTHERWISE (OTHERS : BOOLEAN);

 END;

 VAR V : R(1);

 BEGIN

 V.TWO := 2; { Is illegal since it changes variants from 1 to 2 }

 END;

 VSI Pascal does not currently generate run-time checking code

 to detect this violation.

 1-16

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 6. The AND_THEN and OR_ELSE Boolean operators do not

 short-circuit when used in constant expressions. All

 constant expressions currently do full evaluation in a

 left-to-right order. For example,

 CONST X = FALSE AND_THEN (1 DIV 0 = 0);

 This example will currently generate a compilation error

 instead of correctly definiting the constant X to be the

 value FALSE.

 7. The VSI Pascal compiler currently allows you to use the SIZE

 function on TIMESTAMP variables. As in the case for file

 variables, these types are abstract objects and the compiler

 should not permit assumptions about their size to be used.

 8. When the buffer variable of a file is passed as a VAR

 parameter, the allocation size of the formal VAR parameter

 must match that of the components of the file. Failure to do

 so will result in an Internal Compiler Error. For example:

 PROGRAM A;

 VAR

 F : PACKED FILE OF 0..65535;

 G : FILE OF [WORD] 0..65535;

 PROCEDURE P(VAR I : INTEGER); EXTERNAL;

 BEGIN

 P(F^); { causes an Internal Compiler Error }

 P(G^); { causes an Internal Compiler Error }

 END.

 9. The LSE templates for the Pascal language are shipped as part

 of DECset. These templates have not yet been updated to

 reflect all the new language features added to VSI Pascal.

 10. The HELP file has undergone extensive revision which included

 renaming some topic strings. This will cause problems with

 using the language-sensitive help feature from LSE.

 11. Due to an interaction with the OpenVMS Linker and OpenVMS

 Image Activator, unknown results will occur if a compilation

 unit places a file variable in a [COMMON] block and then a

 shareable image is made from the object file. To share data

 in a shareable image, use environment files or use the

 [GLOBAL]/[EXTERNAL] attributes.

 12. When using the SYS$SYSTEM:PASCAL$SET_VERSION.COM command file

 to select older versions of the VSI Pascal, the older

 compiler may issue an error if the /VERSION qualifier is

 1-17

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 specified. Normally, older compilers will simply ignore any

 qualifiers that were added after its release. However, due

 to the implementation of /VERSION, older compilers will issue

 errors while trying to process other qualifiers. If you

 receive these errors, do not use /VERSION to determine the

 older compiler's version. You will need to look in the first

 line of a listing file or in the ANALYZE/IMAGE output.

 13. Jumping into a WITH statement with a GOTO statement may

 result in an Internal Compiler Error if compiled with

 /OPTIMIZE. Such programs are illegal in nature as bypassing

 the prologue of the WITH statement skips around the code that

 precomputes the address of the record used in the WITH

 statement.

 14. The ALIGNED attribute only allows upto 8192 byte boundaries

 at present (ie, ALIGNED(13)). Support for larger alignments

 will be considered for a future release if there is customer

 demand.

 15. Incomplete support for INTEGER64/UNSIGNED64; Currently, the

 following uses of the INTEGER64/UNSIGNED64 datatypes are

 unsupported:

 a) Literals requiring more than 32-bits cannot be used in

 the declaration section. This implies that you cannot

 write such things as:

 CONST

 BigNum = 12345678912345678;

 but you CAN write things such as:

 i64 := 12345678912345678;

 b) INTEGER64/UNSIGNED64 expressions cannot be used as case

 selectors or variant record tags.

 c) Subranges requiring more than 32-bits cannot be declared

 (since you cannot specify literals large enough to

 construct them).

 d) Array index types cannot be INTEGER64/UNSIGNED64 (since

 you cannot specify subranges of them).

 e) The predeclared constants MAXINT64 and MAXUNSIGNED64 are

 not present. However, you can use LOWER(INTEGER64),

 LOWER(UNSIGNED64), UPPER(INTEGER64), and

 UPPER(UNSIGNED64) in an executable section to obtain the

 same values.

 1-18

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 f) INTEGER64/UNSIGNED64 types cannot be used in variable

 typecasts.

 16. When debugging programs that contain schema, you must use the

 /NOOPTIMIZE qualifier on the PASCAL DCL command. If you do

 not use /NOOPTIMIZE, you might receive incorrect debug

 information or an Internal Debug Error when manipulating

 schema.

 Pointers to undiscriminated schema cannot be correctly

 described to the debugger at this time since the type of the

 pointer is dependent upon the value pointed to by the

 pointer. They are described as pointers to UNSIGNED integers

 instead. For example,

 TYPE S(I:INTEGER) = ARRAY [1..I] OF INTEGER;

 VAR P : ^S;

 BEGIN

 NEW(P,expression);

 END;

1.12 STARLET Definition Files

The contents of STARLET.PAS and other definition files provided during

the VSI Pascal installation are derived or extracted from a file

provided by the OpenVMS system.

On OpenVMS Alpha systems prior to V8.2, the Pascal files are converted

from binary data shipped by OpenVMS (SYS$LIBRARY:STARLETSD.TLB). The

Pascal installation extracts the binary information, converts it to

Pascal source files, compiles them, and places the precompiled

environment files on the system. The SYS$LIBRARY:STARLETSD.TLB file

is not used once the installation is finished.

On OpenVMS x86-64, OpenVMS I64 and OpenVMS Alpha V8.2 and later, the

Pascal files are produced during the OpenVMS build process and are

shipped compressed inside SYS$LIBRARY:STARLETPAS.TLB. The Pascal

installation extracts the Pascal source files, compiles them, and

places them and the precompiled environment files on the system. The

SYS$LIBRARY:STARLETPAS.TLB file is not used once the installation is

finished.

Programs that provide their own Pascal version of system constants,

data structures, or entry points may have to be modified if these

items are provided by the OpenVMS system in the future. For example,

the CLI$_ constants are now been provided by the system.

 1-19

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

Finally, be aware that OpenVMS Alpha and OpenVMS I64 systems may not

provide the exact same set of definitions.

1.13 Compiling For Optimal Performance

The following command line will result in producing the fastest code

from the compiler.

1.14 Alignment Faults

1.14.1 Understanding Alignment Faults

The Alpha and Itanium architectures have rules limiting the use of

unaligned data items. These rules allow the underlying

implementations to be faster than if they allowed unaligned data

accesses. The x86-64 architecture is much more forgiving about

unaligned data accesses. From our studies, the overhead is extremely

small.

On Alpha, if a LDWU (load word), LDL (load longword), LDQ (load

quadword), STW (store word), STL (store longword), or STQ (store

quadword) instruction uses an address that is not a multiple of the

size of the data being accessed (ie, word, long, or quadword), an

exception is generated. The hardware does not support such loads or

stores.

The exception is handled by the Alpha PAL (Privileged Architecture

Library) code. Since the PAL code has exclusive access to the machine

(it sits between the hardware and OpenVMS), the PAL code can execute

multiple instructions to access adjacent longwords or quadwords and

perform the unaligned memory fetch or store. It can do so atomically

on even a multiple CPU system since it understands OpenVMS page table

entries and can prevent other active CPUs from deleting the virtual

memory being accessed. After the PAL code is finished, it dismisses

the exception and processing continues. Unless requested, the PAL

code does not even inform OpenVMS that a fault occurred. The overhead

with the PAL code fixing the alignment fault is measurable, but

reasonable. There is some context saved to get into and return from

the PAL code. The actual fixup of the misaligned data is probably on

the order of a dozen instructions or so plus the minimal PAL state

save/restore sequence.

Many Alpha applications have had alignment faults for years without

any noticable performance penalty. However some applications are

slower without realizing that alignment faults have slowed it down.

On Itanium the situation is much the same. If a LD2 (load word), LD4

(load longword), LD8 (load quadword), ST2 (store word), ST4 (store

 1-20

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

longword), or ST8 (store quadword) instruction uses an address that is

not a multiple of the size of the data being accessed (ie, word, long,

or quadword), an exception is generated. In some cases, the hardware

itself may fixup certain unaligned accesses, but in most cases an

exception is raised.

Unlike Alpha, the Itanium has no PAL code to handle the exception. On

OpenVMS I64, the exception is handled by the operating system. To

ensure that no other active CPUs can delete the underlying memory,

OpenVMS has to acquire various memory management spinlocks, save

considerable state, etc. before it can execute instructions to access

adjacent longwords or quadwords and perform the unaligned memory fetch

or store. After OpenVMS is finished, there is overhead to release the

spinlocks and restore all the saved state. The combined overhead is

considerable. The overhead may be in the thousands or tens of

thousands instructions plus the impact of acquiring/releasing

spinlocks. If other CPUs are creating/deleting virtual memory, the

fixup of the unaligned data access will be delayed further. The

reverse is also a problem. If one CPU is processing many alignment

faults, other CPUs may be delayed tring to create/delete virtual

memory.

1.14.2 What Does The Compiler Know?

Contrary to popular belief, using the PACKED keyword or the /ALIGN=VAX

DCL qualifier does not cause alignment faults. In these situations

the compiler knows when certain fields are unaligned. Consider the

following:

var

 r : packed record

 f1 : char;

 f2 : integer;

 end;

The compiler knows that field F2 is 1 byte from the beginning of the

record. It is a longword integer that is not on a longword memory

boundary. When the compiler fetches (or stores) the field, the

compiler will not simply use an LDL/LD4 instruction. Instead, it will

generate several instructions and either fetch the enclosing quadword

and shift/extract the desired longword or use smaller instructions

like LDB/LD1 and fetch the integer in pieces and combine them together

into a register.

In summary, if the compiler can tell at compile-time that a particular

fetch or store is unaligned, it will generate several instructions

that will not fault instead of a single instruction that always will

fault.

Of course executing 6 or 8 instructions will be slower than executing

 1-21

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

1 instruction, but you are avoiding the alignment fault. If the data

becomes aligned by removing the PACKED keyword, removing the /ALIGN

qualifier, using explicit POS attributes, etc. then additional

performance could be achived. However, this has nothing to do with

alignment faults. See the Pascal User Manual or

SYS$HELP:PASCAL_RECORD_LAYOUT_GUIDE.MEM for additional information on

changing the layout of record fields for additional performance.

1.14.3 What Does The Compiler Assume?

Alignment faults can occur when the compiler assumes something that is

actually not true. In Pascal, this involves either dereferencing

pointers or accessing parameters.

The Pascal compiler assumes that pointers point to memory that is at

least quadword aligned. The NEW builtin and the underlying LIB$GET_VM

library routine provide aligned memory. Consider the following:

type rt = record

 f1 : integer;

 f2 : integer;

 end;

var p : ^rt;

begin

new(p);

p^.f1 := p^.f2;

end

The compiler assumes that since the pointer is aligned that the F1 and

F2 fields are also aligned. The compiler will generate LDL/LD4

instructions to fetch the fields. If the pointer variable is assigned

a value that is not quadword aligned, the assumption the compiler made

is now false. This unaligned pointer will cause alignment faults to

occur when the application runs.

There are several ways for a pointer to get an unaligned value. One

common way is to use the IADDRESS predeclared routine to assign the

pointer instead of using NEW. With IADDRESS it is possible to place a

non-quadword aligned value into the pointer. Another way would be to

share the pointer with a non-Pascal routine which did not know the

Pascal compiler's rules.

The Pascal compiler assumes that parameters passed by reference point

to variables that are aligned on their appropriate boundary depending

on whether VAX or NATURAL alignment was requested. Consider the

following:

type rt = record

 1-22

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 f1 : integer;

 f2 : integer;

 end;

procedure a(var p : rt);

 begin

 p.f1 := p.f2;

 end;

The Pascal compiler assumes that the parameter passed to routine A is

aligned on a longword boundary if compiled with the default

/ALIGN=NATURAL or just aligned on a byte boundary if compiled with

/ALIGN=VAX. If routine A is called with an address of an argument

that is not properly aligned, the assumption the compiler made is now

false. This unaligned parameter will cause alignment faults to occur.

This situation can occur when routine A is called from a non-Pascal

routine or if the caller used the IADDRESS predeclared routine or a

typecast to override Pascal's type system.

1.14.4 Correcting Alignment Faults

You can tell the Pascal compiler that certain pointers may point to

unaligned data by adding the [ALIGNED(0)] attribute to the pointer

declaration. For example,

type p_to_aligned_int = ^ integer;

 p_to_unaligned_int = ^ [aligned(0)] integer;

For pointers with type p_to_aligned_int, the compiler will use

longword instructions to fetch/store memory. For pointers with type

p_to_unaligned_int, the compiler will use additional instructions to

reference memory that would not generate an alignment fault.

Alternatively, the /ASSUME=NOBYTE_ALIGNED_POINTERS DCL qualifier

causes the compiler to assume that all pointers may point to unaligned

memory. This qualifier is a quick way to reduce alignment faults, but

does sacrifice performance by making all pointer references use

additional instructions.

For unaligned parameters, you would place an [ALIGNED(0)] attribute on

the formal parameter definition. For example,

type rt = record

 f1 : integer;

 f2 : integer;

 end;

procedure a(var p : rt);

 begin

 p.f1 := p.f2; ! assume longword alignment

 1-23

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

 end;

procedure b(var p : [aligned(0)] rt);

 begin

 p.f1 := p.f2; ! assume only byte alignment

 end;

1.14.5 Locating Alignment Faults

There are several ways to determine if your application is experencing

alignment faults.

All the following examples are done using the following program:

program foo;

type pint = ^integer;

procedure a(p : pint);

 begin

 p^ := p^ + 1;

 end;

var p : pint;

 buf : array [1..10] of char;

begin

p::integer := iaddress(buf[2]);

while true do

 a(p);

end.

$ PASCAL/NOOPT/DEBUG FLT

$ LINK/DEBUG FLT

1.14.5.1 MONITOR ALIGN (OpenVMS I64 Only)

The MONITOR DCL command has been enhanced to include an ALIGN option.

It gives a system-wide view of alignment faults. You cannot determine

which process or image is generating alignment faults with this

command.

 1-24

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

1.14.5.2 ANALYZE/SYSTEM FLT Extension (OpenVMS I64 Only)

The ANALYZE/SYSTEM utility has an alignment fault extension named FLT.

You can use FLT to collect alignment fault data over a period of time.

You can then examine the fault information to determine which process

and more importantly which PC caused the alignment fault. For

example,

$ analyze/system

OpenVMS system analyzer

SDA> FLT

Alignment Fault Tracing Utility FLT commands:

 FLT LOAD

 FLT UNLOAD

 FLT START TRACE [/BUFFER=pages]

 [/BEGIN=pc_range_low]

 [/END=pc_range_high]

 [/MODE=(K,E,S,U)] (default is ALL modes)

 [/INDEX=pid] (default is ALL processes)

 FLT STOP TRACE

 FLT SHOW TRACE [/SUMMARY]

SDA> FLT LOAD

FLT$DEBUG load status = 00000001

SDA> FLT START TRACE

Tracing started...

SDA> ! wait sufficient time to collect meaningful data

SDA> FLT STOP TRACE

SDA> FLT SHOW TRACE

SDA> FLT UNLOAD

FLT$DEBUG unload status = 00000001

Please remember to FLT UNLOAD when finished with your analysis. When

FLT is loaded, even if it isn't actually collecting data, it will

prevent other fault alignment tools from operating properly.

When analyzing the FLT output, the FLT SHOW TRACE command will show

all the alignment faults that occurred during the trace (within the

limit of the buffer controlled by /BUFFER=pages). Each line shows the

faulting PC as well as the EPID. You can also use the SHOW TRACE

/SUMMARY to find the faulting PC with the highest fault count although

that does not show the EPID value. Once you determine the EPID of the

process you are interested in, you can use the following commands to

determine the image being run:

SDA> SET PROCESS/INDEX=xxx

SDA> SHOW PROCESS/CHANNEL

SDA> SHOW PROCESS/IMAGE

 1-25

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

The image being run is usually the 2nd channel listed in the output.

Once you have set the process, the FLT SHOW TRACE/SUMMARY will show

the correct module name in the image.

With the image name from SHOW PROCESS/CHANNEL, the module name from

FLT SHOW TRACE/SUMMARY, and the faulting PC, you have enough

information to find the instruction and ultimately the source

statement that generated the faulting instruction. EXAM/INSTRUCTION

'faulting-pc' can show the instructions if the image is still in

memory. Using the link map from the image, you can determine which

source module contributed code for that PC value. Subtract the

module's base address from the faulting PC to determine the offset in

the module. Using the compiler listing file (compiled with

/LISTING/MACHINE), you can find the instruction at the offset. The

source line number for that instruction can then be found on the

right-hand side of the listing file. With the source line number, you

can search backwards in the listing file to finally find the source

line. It will probably be a pointer dereference or parameter access.

1.14.5.3 PCA SET UNALIGNED (OpenVMS I64 Only)

PCA (Performance Coverave Analyzer) can be used to collect alignment

fault information on an image.

$ PASCAL/NOOPT/DEBUG FLT

$ LINK/DEBUG FLT

$ DEFINE LIB$DEBUG PCA$COLLECTOR

$ RUN FLT

 PCA Collector Version V4.9

PCAC> SET UNALIGNED

PCAC> GO

$ PCA FLT.PCA

 Performance and Coverage Analyzer Version V4.9

PCAA> TABULATE/UNALIGNED

1.14.5.4 DEBUG SET BREAK /UNALIGNED (OpenVMS Alpha And OpenVMS I64

 Only)

The symbolic debugger can stop at instructions that generate alignment

faults. For example,

 1-26

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

$ RUN FLT

 OpenVMS I64 Debug64 Version V8.3-009

%DEBUG-I-INITIAL, Language: PASCAL, Module: FOO

DBG> set break /unaligned

DBG> go

%DEBUG-I-DYNLNGSET, setting language PASCAL

Unaligned data access: virtual address = 000000007ACE3B61, PC = 0000000000010071

break on unaligned data trap preceding FOO\FOO\A\%LINE 6+64

 6: p^ := p^ + 1;

DBG> examine/instruction .pc-1

FOO\FOO\A\%LINE 6+63: ld4 r10 = [r10] ;;

DBG> examine/source .pc-1

module FOO

 6: p^ := p^ + 1;

DBG> go

Unaligned data access: virtual address = 000000007ACE3B61, PC = 0000000000010081

break on unaligned data trap preceding FOO\FOO\A\%LINE 7

 7: end;

DBG> examine/instruction .pc-1

FOO\FOO\A\%LINE 6+79: st4 [r32] = r10

DBG> examine/source .pc-1

module FOO

 6: p^ := p^ + 1;

1.14.5.5 Alignment Fault System Services (OpenVMS Alpha And OpenVMS

 I64 Only)

There are several OpenVMS system services that can collect alignment

fault information. One of them, SYS$PERM_REPORT_ALIGN_FAULT, will

cause alignment faults to generate a message to SYS$OUTPUT. Consider

the following programs:

$ type enable_align_report.pas

[inherit('starlet')]

program enable_align_report;

begin

$perm_report_align_fault;

end.

$ type disable_align_report.pas

[inherit('starlet')]

program disable_align_report;

begin

$perm_dis_align_fault_report;

end.

 1-27

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

$! Compile and link

$ pascal enable_align_report

$ link enable_align_report

$ pascal disable_align_report

$ link disable_align_report

$! Turn on alignment fault reporting

$ run enable_align_report

$ run flt

%SYSTEM-I-ALIGN, data alignment trap, virtual address=000000007ACE3B61, function

=00000000, PC=0000000000010071, PS=0000001B

%SYSTEM-I-ALIGN, data alignment trap, virtual address=000000007ACE3B61, function

=00000001, PC=0000000000010081, PS=0000001B

%SYSTEM-I-ALIGN, data alignment trap, virtual address=000000007ACE3B61, function

=00000000, PC=0000000000010071, PS=0000001B

^CONTROL-Y^

$ exit

$! Turn off alignment fault reporting

$ run disable_align_report

The messages provide the faulting PC. Using the link map and listing

files, you can track the faulting PC back to the source line that

caused the alignment fault.

1.14.6 Why /USAGE=PERFORMANCE Does Not Help Finding Alignment Faults

The /USAGE=PERFORMANCE DCL qualifier flags variables, record fields,

and array elements that are not optimally aligned or optimally sized.

As mentioned earlier, when the compiler knows that an item is not

properly aligned, it will generate several instructions to fetch or

store the data in pieces instead of using a single instruction which

might get an alignment fault. It is these items that are flagged by

the /USAGE=PERFORMANCE qualifier. The message is essentially saying:

"The compiler had to generate several instructions to avoid an

alignment fault. If you would properly align your data, we could

generate a single instruction and be even better."

Also mentioned earlier, alignment faults occur when the compiler DOES

NOT know when an item is unaligned due to typecasts or explicit

pointer manipulation which violate the compiler's assumptions. The

compiler thinks the item is aligned properly and will generate single

instructions to fetch or store the item. The /USAGE=PERFORMANCE

qualifier will never flag such an item as poorly aligned because the

compiler believes it is properly aligned.

In summary, properly aligning your data items will help performance by

allowing the compiler to generate single memory reference instructions

instead of several instructions. In general, the performance gain

might be just a few percentage points of improvement although some

programs may see higher gains. However, eliminating alignment faults

 1-28

 VSI PASCAL X6.3-139 FOR OPENVMS X86-64 SYSTEMS RELEASE NOTES

has a much greater impact on performance.

1.15 Problems Corrected Since Last Release Of VSI Pascal

 o The compiler incorrectly rejected valid hex-format UNSIGNED

 constants.

 CONST NODE_STOP_TAG = %XFFFFFFF0;

 generated

 %PASCAL-E-UNSEXCRNG, Constant exceeds range of UNSIGNED

 o Various assertions in LLVM and the GEM-to-LLVM converter have

 been resolved. The Pascal source to trigger these assertions

 would be too complicated to describe here but operations like

 string concatention are involved.

 Instruction does not dominate all uses!

 %63 = getelementptr inbounds i8* %CANDIDATE, i32 %57, !dbg !31

 call x86_64_sysvcc void @"OTS$MOVE"(i8* %62, i64 %61, i8* %63)

 Broken module found, verification continues.

 and

 assert error: expression = PointeeType == cast<PointerType>(Ptr->getType()->getS

 calarType())->getElementType(), in file /llvm$root/include/llvm-project-10/llvm/

 include/llvm/IR/Instructions.h at line 945

 VSI Pascal Fatal Error has occurred

 o The control expression for the %IF conditional compilation

 directive always evaluated to TRUE.

 o The optimizer would incorrectly remove a data structure used

 by the RTL for processing files with the [KEY] attribute.

 o The PRESENT and ARGUMENT_LIST_LENGTH builtins would return a

 value that is one past the end of the argument list length.

 1-29

